TRANSITION METALS IN ORGANIC SYNTHESIS: HYDROFORMYLATION, REDUCTION AND OXIDATION

ANNUAL SURVEY COVERING THE YEAR 1982

LÁSZLÓ MARKÓ

Department of Organic Chemistry, University of Veszprém, H-8200 Veszprém, Hungary

CONTENTS

Int	Introduction	
I.	Theoretical Calculations	487
II.	Hydroformylation and Related Reactions of CO	488
1.	Hydrogenation of CO to Hydrocarbons and Oxygen-	
	-containing Organic Compounds	488
2.	Hydroformylation	489
	a) Co Catalysts	489
	b) Rh Catalysts	490
	c) Pt Catalysts	491
	d) Other Metals	492
	e) Heterogeneous Systems (Supported Complexes)	493
	f) Modified Hydroformylations	494
З.	Homologations of Alcohols and Esters with CO	495
4.	Coordination Chemistry Related to CO Hydrogenation	
	and Hydroformylation	496
5.	Water Gas Shift Reaction	498
6.	Reductions with CO + H ₂ O	500
7.	Reactions of Olefins with CO + H_2O	501
III.	Hydrogenation and Reduction	502
1.	H-D Exchange	502
2.	Hydrogenation of Olefins	502
	a) Fe, Ru and Os Catalysts	502
	b) Co, Rh and Ir Catalysts	503
	c) Pd and Pt Catalysts	506
	d) Other Metals	507
З.	Asymmetric Hydrogenation of Olefins	508

4.	Hydrogenation of Dienes and Acetylenes	516
	a) Co, Rh and Ir Catalysts	516
	b) Ni, Pd and Pt Catalysts	517
	c) Other Metals	517
5.	Hydrogenation of Arenes	518
6.	Hydrogenation of Carbonyl Compounds	518
	a) Asymmetric Hydrogenation	519
7.	Hydrogenation of Nitro Compounds	520
8.	Miscellaneous Hydrogenations	520
9.	Dehydrogenations	521
10.	Hydrogen Transfer Reactions	522
	a) Alkanes as Hydrogen Donors	522
	b) Hydrogenation of C=C Bonds	523
	c) Hydrogenation of C=O Bonds	523
	d) Asymmetric Hydrogen Transfer Reactions	524
	e) Hydrogen Transfer to N or Halogen- ∞ ntaining	
	Compounds	5 2 5
11.	Reductions without Molecular Hydrogen	526
	a) Transition Metal Hydrides	526
	b) Low Valent Transition Metal Complexes	527
	c) Inorganic Reductants in the Presence of	
	Transition Metal Complexes	528
	d) Reduction of Carbonyl Compounds via	
	Hydrosilylation	529
	e) Organic Reductants in the Presence of	
	Transition Metal Complexes	530
	f) Photochemically Assisted Reductions	530
	g) Electroreductions	531
IV.	Oxidation	532
1.	Catalytic Oxidation of Hydrocarbons with O2	532
	a) General	532
	b) Oxidation of Alkanes	532
	c) Oxidation of Olefins	533
	d) Epoxidation of Olefins	535
_	e) Oxidation of Aromatic Hydrocarbons	537
2.	Catalytic Oxidation of O-containing Functional	
	Groups with 02	538
	a) Oxidation of Alcohols	538
	b) Oxidation of Phenols	538
	c) Oxidation of Aldehydes and Ketones	541

d) Oxidation of Carboxylic Acids and Derivatives 541

	F 40
Catalytic Oxidation of N-containing Organic Compounds	542
with O2	
4. Catalytic Oxidation of P, S or Halogen-containing	546
Organic Compounds with O ₂	
5. Catalytic Oxidation of Organic Compounds with	
Organic or Inorganic Oxidants	547
a) Oxidation of Hydrocarbons	547
b) Epoxidation of Olefins	549
c) Oxidation of O-containing Functional Groups	553
d) Oxidation of N-containing Compounds	554
e) Oxidation of S-containing Compounds	555
6. Stoichiometric Oxidation with High Valent	
Transition Metal Complexes	556
a) Oxidation of Hydrocarbons	556
b) Oxidation of O-containing Functional Groups	557
c) Oxidation of N-containing Compounds	561
d) Oxidation of P, S, Halogen or Si-containing	
Compounds	563
V. Reviews	564
List of Abbreviations	565
Metal Index	
References	

Introduction

The papers in this survey 1982 have been largely grouped by reaction type and not by the transition metal complexes used in the organic transformations as it has been done for the survey 1981. The rearrangement of the material according to organic reactions has been performed because it was felt that such a grouping would make its presentation more clear. In order to aid those chemists, however, who are mainly interested in the transformations taking place within the coordination sphere of the metal an additional index has been compiled which enables the identification of all papers dealing with a special transition metal.

I. Theoretical Calculations

Theoretical calculations and reinterpretations of literature experimental data suggest that hydrocarbyne complexes (M = C-OH) may be important intermediates in homogeneous transition metal-catalyzed CO reduction [1]. Extended Hückel theory calculations have been carried out to investigate the possible formation of σ and π complexes between olefins and iron carbonyl hydrides, postulated as intermediates in hydroformylation of olefins with CO and H₂O (Reppe synthesis) [2].

Nonempirical pseudopotential calculations were performed for $HPd(C_2H_4)Cl_3$. A collapse mechanism for the formation of planar EtPdCl₃ was proposed [3].

MO calculations for complexes formed in pyrocatechol + Cu^{2+} + O_2 + H_2O systems indicated that O_2 is not coordinated to Cu^{2+} unless H_2O is present in the coordination sphere [4]. The results of a mechanistic study using ab initio theoretical methods were used to outline plausible mechanistic sequences for alkane, alcohol and alkene oxidation by CrO_2Cl_2 and MoO_2Cl_2 . It is suggested that the second oxo group is intimately involved in the reaction sequence [5].

II, Hydroformylation and Related Reactions of CO

1. Hydrogenation of CO to Hydrocarbons and Oxygen-containing Organic Compounds [6-10]

In the synthesis of hydrocarbons and alcohols through hydrocondensation of CO, the complexes of Rh, Ru and Co were found to be the most active. With Ru catalysts the use of very high pressures (>3000 bar) leads to the synthesis of saturated long-chain alcohols (C_1 to C_9) according to a Schultz-Flory distribution [6]. The hydrogenation of CO to compounds containing MeO and $-OCH_2CH_2O$ groups catalyzed by Co_2 (CO)₈ or Ru_3 (CO)₁₂ is significantly accelerated if the reaction is carried out in tri-n-hexylsilane as solvent (270^OC, 200-600 bar). With Ru_3 (CO)₁₂ as catalyst a desilylative reductive decarbonylation can also be observed [7]:

 $R_3SiH + CO + H_2 \longrightarrow RCH_2O-$

Ethylene glycol mono- and diacetate, methyl- and ethyl acetate are formed from synthesis gas in the presence of homogeneous Ru catalyst at 220° C and 430 bar (H₂/ ∞ = 1/1) in AcOH as solvent. Yields and selectivity to glycol esters are substantially improved through the addition of bulky cationic promoters, particularly R₄P⁺ and Cs⁺ [8]. ¹⁴C-Tracer studies show that MeOH and ethylene glycol are primary products of the homogeneous Rh-catalyzed conversion of CO + H₂ and do not undergo secondary transformation under the reaction conditions (220^oC, 850 bar). Paraformaldehyde is readily converted into the typical mixture of reaction products most plausibly via a common reaction intermediate [9]. Ethylene glycol was detected in the products of reduction of CO by using combinations of $[H_{3}Mo(PMePh_{2})_{3}]^{+}$ or $[H_{5}W(PMePh_{2})]^{+}$ with $[Rh_{12}(CO)_{34}]^{2-}$ or $Co(CO)_{4}^{-}$ under a synthesis gas atmosphere at 5-100 bar and 25-200^oC [10].

2. Hydroformylation

a) Co Catalysts

Hydroformylation of alkenes over $\operatorname{Co}_2(\operatorname{CO})_8$ and $\operatorname{Co}_4(\operatorname{CO})_{12}$ at 1 bar and 100 bar CO pressure was studied. The kinetic parameters suggested both dissociative and associative mechanisms [11]. Hydroformylation of cyclohexene by $\operatorname{Co}(\operatorname{acac})_2(\operatorname{H}_2\operatorname{O})_2$ in benzene solution produced the corresponding aldehyde, alcohol and saturated hydrocarbon. A green complex $\operatorname{Co}(\operatorname{acac})_2(\operatorname{C}_6\operatorname{H}_{10})$ has been isolated and shown to have a catalytic activity comparable to that of $\operatorname{Co}(\operatorname{acac})_2(\operatorname{H}_2\operatorname{O})_2$ [12]. In the hydroformylation of polypropylene oil with synthesis gas at 150-170°C in the presence of $\operatorname{Co}_2(\operatorname{CO})_8$ catalyst, the reaction occured predominantly at the double bond in -CH=CHCH₃ groups, whereas the double bond in -CH=C(Me)- groups was not reactive. The reaction rate and conversion decreased and no alcohols were formed in the presence of $\operatorname{Rh}(\operatorname{CO})(\operatorname{PPh}_3)_2\operatorname{Cl}$ [13].

The reactivity ratio of 1-, (EZ)-2-, (E)-3-, (E)-4-, (E)-5-, and (E)-6-dodecene toward hydroformylation at 120° C was 6:2:1:1:1:1 with $Co_2(CO)_8$ and 15:1:1:1:1:1 with $HRh(CO)(PPh_3)_3/PPh_3$ as catalyst. Under optimal conditions 1-dodecene gave 70% unbranched aldehyde, and 2-dodecene gave 55-60% [14].

The nature of the central metal of the catalyst plays the key role in determining the unusually high regioselectivities observed in the hydroformylation of 3,3,3-trifluoro propene (TFP) and pentafluorostyrene (PFS). With $Co_2(CO)_8$ as catalyst mainly normal aldehydes were obtained from TFP (93%) and PFS (79%) whereas $Rh(CO)_{16}$ furnished predominantly iso aldehydes (96% and 97%, respectively) [15].

Hydroformylation of C_{10-13} alkenes, prepared by dehydrogenation of n-alkanes was examined. The amounts of straight chain aldehydes and alcohols formed were 3 times higher than the initial amount of 1-alkenes due to isomerization and higher reaction rate of 1-alkenes. Highest selectivity was obtained using a $Co_2(CO)_8$ + + PBu₃ catalyst [16]. The hydroformylation kinetics of C_{11-14} -olefins (formed by alkane dehydrogenation) by $HCo(CO)_{3}L$ complexes $[L = PBu_3, P(n-C_8H_{17})_3 \text{ or } P(C_{12}H_{25})_3 - P(C_{15}H_{31})_3]$ was determined [17]. Modifying Co catalysts with ditertiary phosphines like diphos the concomitant isomerization is suppressed and therefore almost exclusively only those aldehydes are formed which correspond to the original position of the double bond in the employed olefin. The rate of reaction is strongly decreased, however [18]. The bridged cobalt carbonyl dimer $Co_2(CO)_6(dpm)$ has been used as a catalyst for the hydroformylation of 1-hexene at $120^{\circ}C$ [19].

1- and 2-pentene hydroformylation was studied using $\operatorname{Co}_4(\operatorname{CO})_{10}(\operatorname{PPh})_2$ and $\operatorname{Co}_4(\operatorname{CO})_8(\operatorname{PPh}_3)_2(\operatorname{PPh})_2$ catalysts. $\operatorname{Co}_4(\operatorname{CO})_{10}(\operatorname{PPh})_2$ was re-isolated after 1000 turnovers in 95% yield [20]. The phosphido bridged cluster $\operatorname{Co}_4(\operatorname{CO})_{10}(\operatorname{PPh})_2$ has been used as catalyst not only for hydroformylation, but also for CO hydrogenation and MeOH homologation. In all cases, however, this complex was less reactive than $\operatorname{Co}_2(\operatorname{CO})_n$ [21].

than Co₂(CO)₈ [21]. As increasing amounts of Fe(CO)₅ were added, the catalytic activity of HCo(CO)₃(PBu₃) in the hydroformylation of propylene passed through a minimum at the Fe/Co ratio of about 1. The formation of an inactive carbonyl-bridged complex containing Co, Fe and P was proposed [22].

b) Rh Catalysts

Ethylene and H_2 react with $Rh_4(CO)_{12}$ to form a complex [tentatively formulated as $HRh(CO)_3(C_2H_4)$] which is an active hydroformylation catalyst under mild conditions [23]. The use of $[Rh(COD)(L-L)](ClO_4)$ complexes (L-L = phenanthroline derivatives like 2,9-Me₂phen) as hydroformylation catalyst precursors was studied (50 bar, 80°C). No hydrogenation of olefins or aldehydes was observed but isomerization of the unreacted olefin was significant [24].

The kinetic equation

$$\frac{-d(olefin)}{dt} = k[olefin][Rh]^{1/4}[P_{H_2}/P_{CO}]^{1/2}$$

has been obtained for the hydroformylation of 1-heptene in acetone with a $Rh_2(NBD)_2Cl_2 + PPh_3$ catalyst system (P:Rh = 11:1) at 40-100^oC [25]. Allyl alcohol was continuously hydroformylated in the presence of $HRh(CO)(PPh_3)_3$ [26].

Catalysts formed by addition of $(p-RC_6H_4)_3P$ (R = Cl, F, H, Me, MeO) to $Rh_2(NBD)_2Cl_2$ are more selective in the hydroformylation of 1-heptene than $[(p-RC_6H_4)_3P]_Rh(NBD)^+Clo_4^-$ complexes. This is due to

increased catalytic isomerization of 1-heptene to cis- and trans--2-heptene with the perchlorate catalyst [27]. $Rh_2(Pz)_2[P(OPh)_3]_4$, $Rh_2(Pz)_2(CO)_2[P(OPh)_3]_2$ and $Rh_2(Me_xPz)_2(COD)_2$ complexes (Pz = pyrazolate) catalyze the hydroformylation of 1-heptene both in the presence and absence of PPh₃ at 80°C and 50 bar [28].

The hydroformylation of terminal olefins having an acetoxy, hydroxy or carboalkoxy substituent could be carried out even under 1 bar at $60-90^{\circ}$ C when a small amount of $Ph_2P(CH_2)_4PPh_2$ (n = 2-4, diphosphine/Rh = 1/1-2/1) was added to the catalyst system composed of HRh(CO)(PPh_3)_3 and a large excess of PPh_3 [29]. The addition of such diphosphines to the conventional Rh catalyst system containing a large excess of PPh_3 was also beneficial in case of 1-octene hydroformylation. It decreased olefin isomerization, improved the thermal stability of the catalyst and reduced the inhibitory effects of α , β -unsaturated aldehydes and O₂ [30].

Rhodium/phosphine catalyzed hydroformylation was studied using l,l'-bis diphenylphosphino ferrocene and several derivatives containing substituents on the phenyl groups (p-Cl, m-F, p-CF₃). The most selective catalyst has three P atoms bound to each Rh atom. Electron withdrawing substituents afford higher rates and higher linear:branched aldehyde ratios [31].

c) Pt Catalysts

The deuteroformylation of Z- or E-2-butene, catalyzed by $Pt(DIOP)(SnCl_3)Cl$, gave predominantly erythro- or threo-1,3-d₂-2--methylbutanal, respectively. Thus, hydroformylation occured with cis-stereochemistry [32].

 $\underline{\operatorname{trans}}_{\operatorname{[Pt(COPr^n)(PPh_3)_2Cl]}}$ (which has been prepared from propene, $\underline{\operatorname{cis}}_{\operatorname{Pt(PPh_3)_2Cl_2}}$ and CO in EtOH) catalyzes the hydroformylation of propene in the presence of $\operatorname{SnCl_2}$ in methyl isobutyl ketone solution. $\underline{\operatorname{trans}}_{\operatorname{Pt(COPr^n)(PPh_3)_2}(\operatorname{SnCl_3})}$ could be isolated from this reaction mixture. The latter complex is an active hydroformylation catalyst in methyl isobutyl ketone but no aldehyde is formed if EtOH is used as solvent [33]. Analogously, the complex $\underline{\operatorname{trans}}_{\operatorname{[Pt(COC_6H_{13}-n)(PPh_3)_2Cl]}}$ has been synthesized from $\underline{\operatorname{cis}}_{\operatorname{Pt(PPh_3)_2Cl_2}}$, CO and 1-hexene. In combination with $\operatorname{SnCl_2.2H_2O}$ this complex is also a hydroformylation catalyst [34]. The $\operatorname{Pt(PPh_3)_2Cl_2}/\operatorname{SnCl_2}$ catalyst system is not capable of hydroformylating internal olefins to terminal aldehydes. Using the cationic $[\operatorname{Pt(CO)}_{(\operatorname{PR_3})_2\operatorname{Cl}_2(\operatorname{ClO}_4)/\operatorname{SnCl_2}$ catalyst, significant amounts of terminal aldehydes are formed.

ZnBr₂ is also an effective modifier for this reaction [34a].

The $PtCl_2-SnCl_2$ complexes of (-)-DIOP (1b) and (-)-DIPHOL (2) were employed as catalysts in homogeneous asymmetric hydroformylations of styrene and high optical yields (ca. 94%) were obtained. Polymer-bound (-)-DIOP-PtCl_2-SnCl_2 gave optical yields of 25-30% [35].

d) Other Metals

The hydroformylation of 1-hexene, 1-octene and $Me_3SiCH=CH_2$ is catalyzed by $M(CO)_5(SnCl_2)$, $M(CO)_5(SnO)$ or $M(CO)_6 + SnCl_2$ (M = Cr, Mo, W). Reaction conditions are 150-180°C and 200 bar ($H_2:CO = 2:1$), the activity of the complexes increases in the order Mo < Cr < W. Highest conversion of olefins was 71% in 10 hours [36]. The stoichiometric hydrogenation and hydroformylation of cyclopropenes with $HCO(CO)_4$ and $HMn(CO)_5$ led to similar products. Reactions with Co were significantly faster. The stereochemistry of the reactions suggests radical pairs as intermediates [37]. The cluster anion $HRu_3(CO)_{11}^-$ is a catalyst for the hydroformylation and hydrogenation takes place at $25^{\circ}C$ and 20 bar H_2 and is inhibited by CO. At $100^{\circ}C$ and 40 bar $(1H_2 + 2CO)$ hydroformylation is observed. Under H_2 , the $HRu_3(CO)_{11}^-$ anion is transformed into a mixture of yet unidentified Ru carbonyl species, CO reconverts these into $HRu_3(CO)_{11}^-$ [38].

e) Heterogeneous Systems (Supported Complexes)

 $\operatorname{Co}_2(\operatorname{CO})_8$ was attached to a phosphinated silica surface and the interactions of CO, H2 and propylene molecules with the attached cobalt carbonyl species studied by Raman spectroscopy. The observed spectra could be explained by the conventional mechanism of the hydroformylation reaction [39]. Anchored Co-carbonyl-phosphine complexes were prepared using silica treated with (EtO),Si(CH2CH2CH2PCY2). Propylene hydroformylation experiments indicate that at low pressure (≈1 bar) Co complexes are not removed from the support and hydroformylation takes place on the anchored complexes [40]. The supported cobalt carbonyl cluster catalyst SIL-SiCH₂CH₂CCO₂(CO)_Q was prepared by bonding $Cl_3CCH_2CH_2Si(OEt)_3$ to a silica surface, followed by treatment with Co₂(CO)₈. This catalyst was used for hydroformylation of 1-heptene at 140°C and 40 bar. A high loss of Co was observed [41]. Pd and Co complexes were anchored on phosphinated silica prepared by treating silica with $(EtO)Si(CH_2CH_2CH_2PCy_2)_3$ and used as catalysts for the gas-phase hydroformylation of propene at 40-100⁰C and 1 bar CO. A strong synergetic effect was observed when Pd was introduced into the carbonylcobalt catalyst obtained from the phosphinated silica and $Co_2(CO)_8$ [42].

Poly(2,6-dimethyl-1,4-phenylene oxide) containing cyclopentadienyl ligands attached to the benzyl carbons was prepared and converted to polymer-bound $CpCo(CO)_2$, $CpRh(CO)_2$ and titanocene catalysts. The Co and Rh complexes were hydroformylation catalysts while the immobilized titanocene hydrogenated cyclohexene 10-70 times faster than the homogeneous analog [43].

The polymer-immobilized Rh complexes prepared from $RhCl_3$ or $Rh(CO)_2(acac)$ and chelate resins with iminodiacetic moieties had a catalytic activity for hydroformylation of 1-hexene in EtOH at $100^{\circ}C$ under 20 bar of H₂ and 20 bar of CO. The normal/branched ratio in the aldehyde was 2.3 and 0.7, respectively [44]. Supported Rh(I) catalysts have been prepared by reacting polypropylene grafted p-styryldiphenylphosphine with $Rh(CO)_2(acac)$. In the hydroformylation of hexene-1 this catalyst with a P:Rh ratio of 8 gives a normal aldehyde:branched aldehyde ratio of about 16 at $65^{\circ}C$. This is much higher than that achieved with the corresponding homogeneous catalyst with p-CH₂=CHC₆H₄PPh₂ at the same P:Rh ratio [45]. Hexene-1 was hydroformylated with Rh(CO)(PPh₃)₂Cl and its analogues anchored to alumina and silica. The supported complexes exhibited activity and selectivity similar to the homogeneous catalyst [46].

A $Rh(CO)(PPh_3)_2C1$ type heterogenous catalyst was prepared by treating the SiO₂ carrier with (EtO)₃SiCH₂CH₂PPh₂ followed by complexing with $Rh_2(CO)_4C1_2$. 1-Hexene was hydroformylated with this catalyst at 110^oC and 40 bar to give 100% selectivity for heptanal with 95.7% conversion [47].

f) Modified Hydroformylations

Hydroformylation of propene with CO, H_2 and a mixture of $Co_2(CO)_6(PBu_3)L$ and $Co_2(CO)_5(PBu_3)_2L$ (L = 2-aminopyridine) at 170°C and 40 bar followed by aldol condensation gave 80% yield of 2-ethyl-hexanol [48]. KOAc, K_2CO_3 and KOOCH were effective condensation agents for the preparation of 2-ethylhexanol from porpylene, H_2 and CO in the presence of $Co_2(CO)_8$ and Bu_3P [49].

The hydroformylation of olefins by paraformaldehyde

$$RCH=CH_2 + \frac{1}{n} (CH_2O)_n \longrightarrow RCH_2CH_2CHO + RCHCH_3$$

is catalyzed by $H_2Rh(PPr_3^i)_2(O_2COH)$ at $120^{\circ}C$. At higher temperatures, alcohols and carboxylic acid methyl esters are formed as byproducts. The reaction is rather slow as compared to conventional hydroformy-lation with CO + H_2 [50].

Substituted acetylenes react with ethylene, CO and $\rm H_2$ in the presence of $\rm Rh_4(\rm CO)_{12}$ catalyst:

R, R' = H, Me, Bu, Ph, CH_2OMe , COOMe

Reaction conditions are 150° C and 60 bar ($C_2H_4/CO/H_2 = 25/30/5$), the regio- and stereospecificity of the reaction depends on R and R' [51]. The synthesis of ketones from olefins and CO in the presence of alcohols as H-donors is catalyzed by RuCl₃ or base--promoted Ru₃(CO)₁₂ at 160-200°C and 10 bar. Alkoxycarbonylation and hydrogenation of the olefin are the main side reactions:

 $CH_2 = CH_2 + CO + Me_2CHOH \longrightarrow EtCOEt, EtCOOPr¹, C_2H_6$ The reaction rate is rather low [52].

3. Homologation of Alcohols and Esters with CO + H₂

A new catalyst system, consisting of $Fe(CO)_5$ and a tertiary amine has been developed for the homologation of MeOH to EtOH. Working conditions are 300 bar synthesis gas (H_2 :CO : 1:2) and $200^{\circ}C$, EtOH is formed according the stoichiometry

 $CH_3OH + 2CO + H_2 - CH_3CH_2OH + CO_2$

The following mechanism has been proposed:

$$\begin{array}{c} R_{3}N(base) \\ CH_{3}OH + CO & \longrightarrow & HCOOCH_{3} \\ HCOOCH_{3} + R_{3}N & \longrightarrow & MeR_{3}N^{+} + HCOO^{-} \\ Fe(CO)_{5} + H_{2} + R_{3}N & \longrightarrow & HFe(CO)_{4}^{-} + CO + R_{3}NH^{+} \\ MeR_{3}N^{+} + HFe(CO)_{4}^{-} & \longrightarrow & H(Me)Fe(CO)_{4} + R_{3}N \\ H(Me)Fe(CO)_{4} + CO & \longrightarrow & H(MeCO)Fe(CO)_{4} \\ H(MeCO)Fe(CO)_{4} + CO & \longrightarrow & HcCHO + Fe(CO)_{5} \\ HFe(CO)_{4}^{-} & MeCHO + Fe(CO)_{5} \\ HFe(CO)_{4}^{-} & MeCHO + H_{2} \end{array}$$

 RhI_3 , $\operatorname{Ru}_3(\operatorname{CO})_{12}$ and $\operatorname{Mn}_2(\operatorname{CO})_{10}$ are also active catalysts under these conditions and the best results were achieved with a $\operatorname{Mn}_2(\operatorname{CO})_{10}$ + + Fe(CO)₅ mixed system [53].

Complexes of Mn, Rh and Ru catalyze the homologation of methanol by CO + H_2 in the presence of tertiary amines at 300 bar and $200^{\circ}C$:

 $CH_3OH + H_2 + 2CO - CH_3CH_2OH + CO_2$

The mixed $Fe(CO)_5 + Mn_2(CO)_{10}$ catalyst has been found to give the highest rate and the best selectivity for ethanol (the balance is methane)[54].

Acetaldehyde is the main product of methanol homologation with $CO + H_2$ if a $CO(OAC)_2.4H_2O + PPh_3$ catalyst is used with HI as promoter at 180-200°C. A maximum for conversion and acetaldehyde selectivity is found at I:Co = 2:1, the effect of the P:Co ratio is much less pronounced [55]. The cobalt-catalyzed and iodide-promoted hydrocarbonylation of methanol to acetaldehyde

$$CH_{3}OH + CO + H_{2} - CH_{3}CHO + H_{2}O$$

is significantly influenced by the nature of the iodide promoter the covalent MeI being much more active than ionic iodides like KI. Using both promoters a significant synergism could be observed [56].

Homologation of MeOH with $\text{Co}_2(\text{CO})_8 + \text{RuCl}_3.\text{nH}_2\text{O}$ catalysts was studied. Both the yield and selectivity of EtOH were significantly dependent on the Ru/Co ratio and the composition of synthesis gas. Ethers such as 1-4-dioxane, THF, Me-cellosolve and diglyme served as good solvents to give higher yield ($\approx 60\%$) and selectivity ($\approx 80\%$) of EtOH [57].

The nature of the iodide promoter effects the selectivity of the Ru-catalyzed reactions of methyl acetate with CO and H₂. MeI favors the homologation reaction leading to ethyl acetate whereas alkali and ammonium iodides favor the simple carbonylation reaction to acetic acid [58]:

> $CH_3COOCH_3 + CO + 2 H_2 \longrightarrow CH_3COOC_2H_5 + H_2O$ $CH_3COOCH_3 + CO + H_2O \longrightarrow 2 CH_3COOH$

In the homologation of methyl acetate the mixed clusters $(\text{Et}_4\text{N})[\text{RuCo}_3(\text{CO})_{12}]$ and $(\text{Et}_4\text{N})[\text{Ru}_3\text{Co}(\text{CO})_{13}]$ or a combination of $\text{Ru}(\text{acac})_3$ and $\text{Co}_2(\text{CO})_8$ were found to be more active catalysts for the formation of ethyl acetate than Ru or Co alone. Methyl iodide was used as a promoter [59].

4. <u>Coordination Chemistry Related to CO Hydrogenation and</u> <u>Hydroformylation</u>

Reduction of $[(\eta^5 - C_5 R_5) \operatorname{Re}(\operatorname{NO})(\operatorname{CO})_2](\operatorname{BF}_4)$ (R = H, Me) by NaBH₄ in THF/H₂O afforded formyl, hydroxymethyl and methyl $(\eta^5 - C_5 R_5) \operatorname{Re}(\operatorname{NO})(\operatorname{CO})$ R' (R' = CHO, CH₂OH, CH₃) derivatives. These two series of complexes are the first instances in which models for all presumed intermediates in CO reduction have been prepared [60]. Sodium cyanoborohydride (NaBH₃CN) in alcohols reduces a CO ligand on CpFe(CO)⁺₃ via a hydroxymethyl intermediate to an alkoxymethyl ligand [61]:

$$CpFe(CO)_{3}^{+}$$
 $\xrightarrow{NaBH_{3}CN}$ $CpFe(CO)_{2}CH_{2}OH$ \xrightarrow{ROH} $CpFe(CO)_{2}CH_{2}OR$

$$R = Me, Et$$

30-40%

The reactions of mono-, di-, tri-, tetra- and hexanuclear metal

carbonyls with HSO_3CF_3 have been studied. Only tetra- and hexanuclear clusters produce significant amounts of CH_4 [61a].

A high-pressure IR-study has been made of the stability of some high-nuclearity carbonyl clusters of Ru and Os to CO and H₂. Reactions with CO tend towards the trinuclear species $Ru_3(CO)_{12}$ and $Os_3(CO)_{12}$, while in reactions with H₂ the tetranuclear species $Ru_4H_4(CO)_{12}$ and $Os_4H_4(CO)_{12}$ seem to be the favored products [61b]. ¹³C-NMR measurements on Rh carbonyl clusters in solutions have been performed under high pressures of CO + H₂ (up to 1000 bar). It is shown, that $Rh_{12}(CO)_{30}^{2-}$ fragments into $Rh_5(CO)_{15}^{-}$ already at 5 bar of CO, but further fragmentation does not occur [62].

Reacting an acylmanganese pentacarbonyl with H_2 and CO different products are formed depending on the solvent (at 70^oC and 80 bar):

$$\frac{\text{sulfolane}}{\text{PhCH}_2\text{CMn}(\text{CO})_5 + \text{CO} + \text{H}_2} + \frac{\text{hexane}}{\text{PhCH}_2\text{CH}_2\text{OCOMn}(\text{CO})_5} + \frac{\text{hexane}}{\text{CO}_5} + \frac{\text{hexane}}{\text{PhCH}_2\text{CH}_2\text{OCOMn}(\text{CO})_5} + \frac{\text{hexan}}{\text{PhCH}_2\text{CH}_2\text{OCOMn}(\text{CO})_5} + \frac{\text{hexan}}{\text{PhCH}_2\text{CH}_2\text{OCOMn}(\text{CO})_5} + \frac{\text{hexan}}{\text{P$$

Treatment of (2a) with CO and H_2 at 200^oC and 80 bar in the presence of $HMn(CO)_5$ yields the formate $PhCH_2CH_2OCHO$ [63]. Four distinct mechanisms have been established by kinetic measurements for the reactions between $p-MeOC_6H_4CH_2Mn(CO)_4L$ and $HMn(CO)_4L$ [L = CO or $(p-MeOC_6H_4)_3P$] leading to $p-MeOC_6H_4CH_3$ and/or $p-MeOC_6H_4$ CH_2CHO . Some of the factors which influence the choice among these mechanisms (e.g. effect of L, solvent, or CO) have been identified [64].

The anion $EtFe(CO)_{4}^{-}$ reacts with $HFe(CO)_{4}^{-}$ to yield propionaldehyde in a smooth reaction:

$$EtFe(CO)_{4}^{-} + HFe(CO)_{4}^{-} \xrightarrow{O^{O}C} EtCHO 70$$

On the other hand the ethylation of the $HFe(CO)_4^-$ anion yields only ethane even under a high CO pressure:

$$HFe(CO)_{4}^{-} + EtI = \frac{100 \text{ bar CO}}{25^{\circ}C} EtH + Fe(CO)_{5}$$

These results suggest, that a binuclear mechanism may account for the formation of aldehydes in the Reppe hydroformylation process [65]. HCo(CO)_4 and styrene react in the presence of CO to form PhEt and PhCHMeCOCo(CO)₄, the kinetic data suggest a common radical pair intermediate for both reactions. The branched-chain acyl complex slowly isomerizes to the straight-chain isomer PhCH₂COCo (CO)₄ [66]. The exchange

$$\operatorname{HRh}(\operatorname{CO})(\operatorname{PPh}_3)_3 + \operatorname{n}\operatorname{PPh}_3 \longrightarrow \operatorname{HRh}(\operatorname{CO})(\operatorname{PPh}_3)_2 + (\operatorname{n+1})\operatorname{PPh}_3$$

was studied at $5-105^{\circ}C$ (n = 0-140). In general the equilibrium favored the triphosphine rather than the biphosphine complex. The complexes of Ph₂PCH₂CH₂PPh₂ and Ph₂P(CH₂)₃PPh₂ prepared from the triphosphine rhodium complex by ligand exchange exhibited sharply reduced ligand exchange under comparitive conditions [67]. NMR--spectroscopic investigations indicate that the intermediate of hydroformylation with HRh(CO)(PPh₃)₃ as catalyst under ambient conditions is the square-planar <u>cis</u>-HRh(CO)₂(PPh₃) [68]. This complex is trapped in the presence of olefins to form an acyl complex (3). In the case of octene-1 only one compound has been observed

3

 $(R = n-C_8H_{17})$ but with styrene both possible isomers $(R = CH_2CH_2Ph$ and CHMePh) are formed, the branched-chain isomer being the primary product at 5°C which slowly isomerizes to the straight-chain isomer at 25°C [69]. In toluene solutions of $Rh(CO)_2(acac)$ or $HRh(CO)(PPh_3)_3$ containing PPh₃ the complexes $HRh(CO)_2(PPh_3)_2$ and $Rh_2(CO)_2(PPh_3)_4$ were identified in presence of H_2 and CO at -35 to -90°C by ³¹P-NMR. Based on these results also complex (3) was proposed as the intermediate of hydroformylation [70].

5. Water Gas Shift Reaction

Based on preparative experiments leading to $M(CO)_5(OOCH)^$ type formato complexes (M = Cr, Mo, W) it has been proposed, that the premier mechanistic step in the thermal catalysis of the water gas shift reaction by group 6B metal carbonyls entails the nucleophilic attack of a CO ligand by the hydroxide ion leading to a metallocarboxylic acid $M(CO)_5(COOH)^-$ [71]. Under photocatalytic conditions, however, the loss of a CO ligand is the first step followed by the reaction with formate (formed from CO and OH⁻) in solution to yield a formate complex [72]:

$$M(co)_6 \xrightarrow{-co} M(co)_5 \xrightarrow{HCOO} M(co)_5(ooch)^-$$

It was shown, that the anion $Mo(CO)_5(OOCH)^-$ is present during the water gas shift reaction in basic media and has been proposed as a likely catalytic intermediate [73].

The kinetics of the following two reactions and have been determined:

$$Fe(CO)_5 + OH^- - HFe(CO)_4^- + CO_2$$

4 $H_2Fe(CO)_4 - 3 H_2 + H_2Fe_3(CO)_{11} + Fe(CO)_5$

In the water-gas shift reaction, $Fe(CO)_5$ is a poor catalyst because of the conflicting pH requirements of these two steps involved in the catalytic cycle [74]. The kinetics of methoxy- and hydroxycarbonyl adduct formation from $Ru(CO)_5$, $Ru_3(CO)_{12}$ and $Fe_3(CO)_{12}$ have been determined (R = H,Me):

$$M_{x}(CO)_{y} + OR^{-} - M_{x}(CO)_{y-1}(COOR)^{-}$$

The three substrates are 10^3-10^4 times more reactive against these oxygen nucleophiles in comparison to Fe(CO)₅. This explains the much higher catalytic activity of Ru(CO)₅ in the water gas shift reaction as compared to Fe(CO)₅ [75].

The trinuclear Ru clusters $\operatorname{Ru}_3(\operatorname{CO})_{12}$ and $\operatorname{HRu}_3(\operatorname{CO})_{11}$ were shown to play the major role in catalysis of the water gas shift reaction in basic media irrespective of whether the reaction is initiated by tetranuclear or trinuclear Ru carbonylates. H₂ inhibits this catalytic system in accordance with the equilibrium [76]:

$$3 H_3 Ru_4 (CO)_{12}^{-} + 9 CO = 3 HRu_3 (CO)_{11}^{-} + Ru_3 (CO)_{12}^{-} + 3 H_2$$

The complexes [Ru(CO)(N-N)C1]C1 [(N-N = bpy or phen] were shown to be active catalytic species for the water gas shift reaction under illumination with white light (100-160^OC, 1-3 bar CO). The rate determining step is the photochemical loss of H₂ from H₂Ru(bpy)₂C1⁺, while CO₂ is produced thermally [77]. Os and Ru cluster carbonyls were anchored on cross-linked polystyrene through metal-C bonds and their catalytic activities for the water gas shift reaction studied [78].

Several side reactions occur under the conditions of the carbonylation of methanol to acetic acid in the presence of Rh or Ir catalysts. Of these the water gas shift reaction (with Rh) and the formation of methane (with Ir):

$$CH_3OH + CO \longrightarrow CH_4 + CO_2$$

has been studied. The following mechanism has been proposed for the water gas shift reaction:

At low acidity step (a) whereas at high acidity step (b) becomes rate controling. This is in agreement with the observation that the rate shows a maximum with the Hammett acidity function (H_0) [79].

The A-frame complex $(\mu - H)Rh_2(\mu - CO)(CO)_2(dpm)_2^+$ catalyzes the water has shift reaction, the hydroformylation of ethylene to propanal by CO + H₂O, and the hydrogenation of ethylene to ethane and propanal to propanol by H₂ at 90°C and 1 bar. The nearly identical rates of the water gas shift reaction and hydroformylation suggest similar slow steps [80].

 $[H_3Pt_2(Ph_2PCH_2PPh_2)_2](PF_6)$ catalyzes the water gas shift reaction at 100°C, the turnover rate is considerably higher at lower pressures of CO. Tetranuclear clusters are formed during the reaction in the catalytic solutions [81].

6. Reductions with CO + H2O

The $H_2Rh(PPr_3^i)_2(O_2COH)$ complex was attached to a phosphinated silica prepared from $Ph_2P(CH_2)_3Si(OMe)_3$ and used for the hydrogenation of Me cinnamate with CO and H_2O . The heterogenized catalyst can be repeatedly reused with some loss of activity [82].

The ${\rm Rh}_6({\rm CO})_{16}$ + ${\rm Me}_2 {\rm N(CH}_2)_3 {\rm NMe}_2$ catalyst system has high activity for the reduction of aldehydes using CO and H₂O as the H source at

80⁰C and 5 bar. Unsaturated aldehydes give the corresponding unsaturated alcohols in high yield (80-100%)[85].

Nitrogen heterocycles like quinoline or phen are partially hydrogenated by CO + H_2O in presence of $Fe(CO)_5$ and KOH at 42 bar and 150°C. The catalyst system is also active for the hydrogenation of anthracene to the 9,10 dihydro derivative. This hydrogenation is enhanced by phase transfer agents [84]. A wide variety of Mn, Fe, Ru and Co carbonyl compounds were tried as catalysts for the reduction of polynuclear heteroaromatic N compounds using water gas shift (CO, H_2O , base) and synthesis gas (CO: $H_2 = 1:1$) conditions. In most cases only the N containing ring was hydrogenated [85]. Nitroarenes are reductively N-alkylated and transformed into N-heterocycles with aldehydes, CO and H_2O in the presence of Rh and Pd complexes at 180°C and 70 bar:

R = Me, Et, Pr X = H, Me, Cl, MeO

Best results were achieved with the binary catalyst $Rh(PPh_3)_3Cl + PdCl_2$ [86]. Oxidized N compounds are reduced by CO + H₂O with $[Ru(COD)(py)_4](BPh_4)_2$ as catalyst at 100-140^OC and 10-80 bar. Aromatic and tertiary aliphatic nitro compounds yield amines, secondary and primary aliphatic nitro compounds ketones (via oximes) and amides, respectively [87].

7. Reactions of Olefins with CO + H₂O

Styrene is hydrogenated and hydroformylated by CO and H_2O in the presence of a Fe₃(CO)₁₂ + Et₃N + NaOH catalyst system at 140^OC and 100 bar in $H_2O/MeOH$. 1,3-Diphenylbutane is formed as a by-product [88].

Methyl acrylate is hydrocarbonylated to dimethyl 4-oxopimelate by CO + H_2O with the $Co_2(CO)_8$ + diphos catalyst system at $135^{O}C$ and 70 bar [89]:

$$2 \text{ CH}_2 = \text{CH}_2 \text{COOMe} + 2 \text{ CO} + \text{H}_2 \text{O} \longrightarrow \text{O} = \text{CH}_2 \text{CH}_2 \text{COOMe} + \text{CO}_2 \text{CH}_2 \text{CH}_2 \text{COOMe}$$

Rhodium complexes like $Rh_6(CO)_{16}$ catalyze the synthesis of tertiary and secondary amines from olefins, CO, H_2O and amines or

NH3 at 140°C and 70 bar [90]:

 $C=C + 3 co + H_2O + HN$ $---- HC - CH_2 - N + 2 co_2$

Aldehyde formed from the olefin by hydroformylation is supposed as an intermediate. Enamines and Schiff bases are hydrogenated to saturated amines under the same conditions [90].

III. Hydrogenation and Reduction

1. H-D Exchange

Irradiation of a solution of $(C_5Me_5)Ir(CO)_2$ in neopentane at room temperature resulted in the formation of $(C_5Me_5)Ir(CO)(H)$ (CH_2CMe_3) . The oxidative addition of such an unactivated sp³ C-H bond has not been observed yet although it has been proposed as a step in the catalysis of H-D exchange by transition metal complexes [91].

The rate constants of oxidation and H-D exchange of cyclohexane in aqueous Pt(II) - Pt(IV) chloride solutions were determined [92]. H-D exchange between benzene and C_2D_4 in the presence of vanadocene at 70°C gave mainly C_6D_6 ; similar exchange with CH_4 gave mostly CH_3D . Results indicate that the reactions involve oxidative addition of the hydrocarbons to vanadocene [93]. Ortho-deuterated aromatic carboxylic acids and β -deuterated α , β -unsaturated carboxylic acids may be prepared with high regioselectivity by exchange deuteration of the unlabelled acids with D_2^0 in the presence of RhCl₃.3H₂O at 110°C [94].

2. Hydrogenation of Olefins

a Fe, Ru and Os Catalysts

Laser photocatalytic hydrogenation of 1-pentene with $Fe(CO)_5$ was studied. The quantum yield was about twenty. $Fe(CO)_3$ is regarded as the catalyst [95]. The hydrogenation of allylbenzene was studied using iron complexes supported on a polymer containing phosphonite or phosphonate groups. The catalysts with phosphonite groups are more selective but less active than the catalysts with phosphonate groups [96].

The cluster $H_4 Ru_4 (CO)_{12}$ acts as a catalyst for ethylene hydrogenation in heptane solution at $72^{\circ}C$. Detailed kinetic measurements and spectral investigations support metal cluster catalysis with $H_3 Ru_4 (CO)_{11} (C_2 H_5)$ as an intermediate:

$$H_{4}Ru_{4}(CO)_{12} \longrightarrow H_{4}Ru_{4}(CO)_{11} + CO$$

$$H_{4}Ru_{4}(CO)_{11} + H_{2} \longrightarrow H_{6}Ru_{4}(CO)_{11}$$

$$H_{4}Ru_{4}(CO)_{11} + C_{2}H_{4} \longrightarrow H_{3}Ru_{4}(CO)_{11}(C_{2}H_{5})$$

$$H_{3}Ru_{4}(CO)_{11}(C_{2}H_{5}) + H_{2} \longrightarrow H_{4}Ru_{4}(CO)_{11} + C_{2}H_{6}$$

In the presence of D_2 a rapid H-D exchange between reactants takes place to give C_2H_3D and HD [97]. The photocatalyzed hydrogenation of ethylene by $H_4Ru_4(CO)_{12}$ was reported. The quantum yield for ethane formation was 1.8 and the reaction was inhibited by CO. The Ru_4 cluster framework seems to provide the catalytic sites [98].

The hydrogenation of olefins is catalyzed by RuPt_2 , Ru_2 Pt, Fe₂Pt and Os₃ clusters on Ph₂P group containing polymeric or silica supports [99]. The reaction between Os₃(CO)₁₂ and silica gives the grafted cluster HOs₃(CO)₁₀(OSi \leftarrow) which is a catalyst for ethylene hydrogenation at 80°C. Several intermediates of the catalytic cycle have been observed by infrared spectroscopy [100].

b) Co, Rh and Ir Catalysts

The coupled hydrogenation of PhR (R = H, Me, Et) and olefins (styrene, cyclohexene, cyclohexadiene, l-hexene, 1,3-butadiene, isoprene) was studied with catalysts consisting of Co complexes, Bu_3P , and Al compounds or Grignard reagents. PhR was hydrogenated to cyclohexanes and cyclohexenes; the selectivity for cyclohexene from benzene reached 70%. NMR data indicated that $H_3Co(PBu_3)_3$ was formed in a Co(acac)₂ + HAl(CH_2CHMe_2)₂ + Bu_3P system [101]. The reaction of NaBH₄ with complexes of N,N-diethylnicotinamide with $CoCl_2$, NiCl₂ and RhCl₃ gave catalysts for the hydrogenation of 2-methyl-1,3-butadiene, allylbenzene, and Me linoleate. The activity of the catalysts increased in the order Co < Ni < Rh [102].

Co-condensation of Rh vapours and toluene at liquid N₂ temperature followed by warming to about -50° C gives a red-brown solution which is a good catalyst for the hydrogenation of olefins at room temperature. When all olefin has reacted a brown precipitate is formed (a metal cluster species containing organics) which catalyzes the hydrogenation of aromatic hydrocarbons [103]. $[(C_5Me_5Rh)_2(OH)_3]$ Cl (A) is an effective olefin hydrogenation catalyst. It can be activated to become even more efficient either by exposure of its solution to air (which burns off some C_5Me_5 ligand) or by addition of small amounts of Rh complexes which do not contain stronly bound ligands. The best homogeneous catalyst contains 80% (A) and 20% Rh₂(COD)₂Cl₂

(B). Catalysts with a higher proportion of (B) were heterogeneous [104].

Examination of $Rh(PPh_3)_3Cl$ as a catalyst precursor by ESCA revealed Rh(I) and Rh(III) species in the catalyst. The ratio of Rh(I) to Rh(III) was 3:2 regardless of the source of the compound (commercial or laboratory preparations). Hydrogenation of cyclohexene was performed to determine the effect of the higher binding energy species on the catalytic activity [105]. The hydrogenation of cyclohexene and hexene-1 with $Rh(PPh_3)_3Cl$ as catalyst is accelerated by a factor of 1.7 by photolysis [106]. Selective 1,2-deuteration and tritiation of 1,2-dehydro methadol (4) and some derivatives was performed with $Rh(PPh_3)_3Cl$ as catalyst. Oxidation of the labeled methadols (5) with pyridinium chlorochromate followed by treatment with aqueous NaOH to remove labile $\alpha - D(T)$ furnished 1-D(T) methadone (6) [107]:

 $[Rh(NO)(PPh_3)_2L]$ (L = p-benzoquinone) catalyzes the hydrogenation of l-hexene, cyclohexene, and styrene, as well as the selective hydrogenation of 1,3-cyclohexadiene to cyclohexene. The catalytic activity of the complex is low [108]. The complexes <u>cis</u>- and <u>trans</u>-Rh(CO)L₂Cl (L = 2-morpholino-, piperidino-, diphenylamino-, diethylamino- and dimethylamino-1,3,2-dioxaphosphorinane) were prepared. Only the <u>trans</u> isomers are active in the hydrogenation (and isomerization) of 1-heptene at 70^oC under 1 bar H₂ pressure [109]. Aqueous or methanolic solutions of the complexes obtained from Rh₂(NBD)₂Cl₂, Ph₂PCH₂CH₂NMe₃⁺NO₃⁻ and H₂ catalyze the hydrogenation of water-soluble and water-immiscible olefins in one- or two-phase systems, respectively. Addition of a macroreticular cation exchange resin results in a supported catalyst which shows negligible leaching and from which the Rh can be quantitatively recovered with HClO₄ [110]. Rh(ttp)Cl in the presence of Et_3Al is an effective homogeneous catalyst for hydrogenation of 1-olefins and 1-octyne. A mechanism involving RRh(ttp), HRh(ttp) associated with an ethylaluminium species and H₂ is proposed to account for the spectroscopic and kinetic data [110a]. The observed rate of hydrogenation of 1-octene to octane at 20^oC is 25 times higher than with Rh(PPh₃)₃Cl under comparable conditions [111].

The insoluble polymer $(Rh(CO)[(CN)_2C_6H_4]Cl)_4$ prepared from $Rh_2(CO)_4Cl_2$ and 1,4-diisocyanobenzene catalyzes the hydrogenation and isomerization of 1-hexene. These reactions are retarded by light but the initiation of hydrogenation is a photoassisted process [112]. Rh bound on phosphinated or sulphonated polystyrenes and polyimine-type chelate resin catalyzes olefin isomerization and hydrogenation. The oxidation state of the metal was determined by XPS and found to be close to Rh(I) [113].

The catalytic activity of complexes of Rh(III) with polyethyleneimine in cyclohexene hydrogenation increases after repeated use and depends on the amount of Rh(I) present [114]. Polymeric hydrogenation catalysts for alkene and benzene were prepared by treating PVC with HCONMe₂, supporting the product on SiO₂, and treating it with RhCl₃.3H₂O. The activity of the complex is higher than that of polyamide-metal complexes or other polymeric complexes for the hydrogenation of benzene and cycloolefins under mild conditions [115]. Rh(I) complexes fixed on silica gel were prepared by exposing first the ligand (EtO)₃Si(CH₂)_nPPh₂ (n = 1-6) and then the Rh(I) salt in solution to the silica gel support. The effect of support porosity and the degree of its surface saturation were studied on the activity and stability of the prepared catalysts in hydrogenation of alkenes [116].

Several tests establish the homogeneity of the $[Ir(COD)(PPh_3)_2]$ (BF₄) alkene hydrogenation (and dehydrogenation) catalyst. Based primarily on NMR spectroscopic results the following mechanism has been proposed for olefin hydrogenation with this catalyst (L = PPh₃ ol = olefin) [117]:

Ir (CO) (Ph₃P)₂Cl did not catalyze the hydrogenation of acrylonitrile at room temperature, but at 80°C under pressure the reaction was fairly rapid [118]. The hydrogenation of 1-hexene in solutions containing [M(diolefin)(P(p-MeOC₆H₄)₃)₂](ClO₄) (M = Rh, Ir) is fastest in 2-methoxy ethanol and in benzene and slowest in dichloromethane. The complexes show high selectivities in the hydrogenation of 3-hexyne and several diolefins to monoolefins [119]. The carboranyliridium complex [Ir(σ -carb)(CO)(PhCN)(PPh₃)], where carb = -7-Ph-1,2-C₂B₁₀H₁₀, was found to be an effective catalyst for homogeneous hydrogenation of α -olefins and acetylenes. Double bond isomerization is negligible and internal olefins are not hydrogenated [120].

c) Pd and Pt Catalysts

Several compounds of Pd(II), Pd(I) and Pd(O) with the ratio P:Pd >1 were found to be inactive as hydrogenation catalysts if no O_2 was present. In presence of O_2 , H_2O_2 is formed which oxidizes part of the PPh₃ and enables the formation of $Pd_5(PPh)_2$ which is an active catalyst for the hydrogenation of many organic compounds containing double bonds. The same catalytically active complex is formed also from $Pd_2(PPh_3)_2$ and $[Pd(OAc)_2]_3$ under H_2 in which case no O_2 is necessary to activate the system [121,122]:

 $Pd_2(PPh_3)_2 + [Pd(OAc)_2]_3 + 4.5 H_2 \longrightarrow Pd_5(PPh)_2 + 3PhH + 6 AcOH$

The complex $[Pd_5(phen)_2(OAc)]_n$ catalyzes the hydrogenation of allyl alcohol and 1,3-pentadiene [123].

A poly- γ -(m-diphenylphosphinophenyl)propylsiloxane-Pd complex was prepared by treating the polymer with Na₂PdCl₄.4H₂O. The complex exhibits high activity and selectivity in hydrogenation of olefins. It can be reused without serious loss of activity [124]. The same Pd complex catalyst supported on colloidal SiO₂ is useful for the hydrogenation of ethylenic double bonds having aromatic, -CN, -COOR substituents. Cyclopentadiene, isoprene, or α -pinene are not hydrogenated [125]. An XPS study of a poly methylphenylsilazasiloxane-Pd complex showed 2 lone pairs of electrons on 2 N atoms and 1 Pd atom. Inactivation of the complex in the hydrogenation of olefins is caused by the reduction of Pd(II) to Pd(O)[126].

Poly $[4-(2)-vinylpyridine]-PdCl_2$ complexes are effective hydrogenation catalysts for olefins at $30^{\circ}C$ and 1 bar H₂ pressure. The complexes are stable in air and can be easily recovered, and

repeatedly used without loss of activity [127]. Pd chelates with 5-amino-2-(2-hydroxy-4- and -5-aminophenyl)benzoxazole-terephthaloyl chloride copolymer polyamide fibers catalyze the hydrogenation of 1-hexene, 1,3-pentadiene, allyl benzene, and Me linoleate. The dienes give a 1:1 mixture of the corresponding olefins and paraffin [128].

Palladium complexes containing 1-6 Pd atoms, fixed on silica gel catalyze the hydrogenation of 3-sulfolene to sulfolane and of thiophene to thiophane at 20[°]C and 1 bar [129]. Pd-phosphine cluster complexes were fixed on silica gel and their catalytic activity tested in the disproportionation of cyclohexene and the hydrogenation of cyclopentadiene and cyclopentene [130].

Silica-supported poly- γ -diphenylphosphinopropylsiloxane-Pt complex is a highly active and selective catalyst for the hydrogenation of alkenes at room temperature and atmospheric pressure, and can be reused 30 times without any appreciable loss in catalytic activity [131]. Treatment of $(Ph_3P)_2PtO_2$ with H_2 in C_6H_6 at $65^{\circ}C$ gave a dark brown amorphous complex, Ph_3PPtO , which exhibited catalytic activity in the hydrogenation and isomerization of olefins. The addition of PPh_3 inhibited hydrogenation but increased selectivity for hydrogenation [132].

d) Other Metals

Irradiation of $H_4M(diphos)_2$ (where M = Mo, W) in the presence of an alkene like 1- or 2-pentene results in stoichiometric reduction to form alkane. In an atmosphere of H_2 catalytic hydrogenation occurs, 1-pentene turnover numbers above 150 have been observed [133]. Metallophthalocyanines are active as catalysts in the hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline at 300-400^oC and 70-200 bar H_2 . Little or no hydrogenolysis of the product is observed [134]. The reaction of $Cu(st)_2$ with Et_3Al formed a soluble catalyst which promoted the selective hydrogenation of linolenyl groups in soybean oil. The activity was enhanced by the addition of SiO_2 , Al_2O_3 or TiO_2 . More active and in some cases more selective catalysts were formed when Et_3Al was replaced by R_3Al compounds containing longer chain alkyl groups. Among other organometallics tested Et_2Mg and (iBu)₂AlOEt formed active catalysts [135].

3. Asymmetric Hydrogenation of Olefins

The complexes formed from the asymmetric hydrogenation catalysts $Rh(P-P)(MeOH)_2^+$ [(P-P) = (-)-DIOP (1b) or diPAMP (7)] and α , β -unsaturated acids were investigated by ³¹P NMR spectroscopy. The DIOP-complex (a 7-membered chelate) forms preferentially complexes in which olefin and carboxylate are bound to the metal. In related experiments with diPAMP 2-methylenesuccinic acid gave a variety of complexes including tridentate species where both carboxyl groups and olefin were concomitantly bound [136].

7, (R,R)-diPAMP

Enamiderhodium complexes formed by the six- and seven-ring chelate-forming biphosphines (-)-DIOP (lb), $Ph_2P(CH_2)_3PPh_2$ and $Ph_2P(CH_3)_4PPh_2$ have been investigated by ³¹P and ¹³C-NMR spectros-copy. Derivatives of Z-dehydroamino-acids are co-ordinated to Rh through olefin and amide, whereas derivatives of E-dehydroamino-acids through olefin and carboxylate groups. Latter arrangement is inferior in effecting enantioselection leading to lower optical yields in hydrogenation [137]. When the asymmetric hydrogenated in CH_2Cl_2 , a non-donor solvent, dimeric $[Rh(cycphos)]_2(PF_6)_2$ results [(R)-cycphos see (8)]. This complex is a π -arene bridged species and may be present in low levels also in a donor solvent, such as MeOH [138].

(R) - cycphos 8

Dehydroaminoacids containing a thighene ring (9) were hydrogenated with Rh(I) complexes of (+)-and (-)-DIOP (la and lb) as catalysts. The Z-acids gave quantitative conversion and enantiomeric excess up to 78%. The catalyst was apparently insensitive to

poisoning by the thiophene sulfur [139].

$$CH=C(NHCOR)COOH$$
 (R = Me, Ph) 9

 $[Rh(COD)L_2](BF_4)$ [L = optically active Ph₂PCHMeR (R = Et, iPr)] complexes catalyzed the hydrogenation of E-PhCH=CMeCOOH, E-MeCH= =CMe-COOH and CH=CEtPh to give the (R)-isomer with optical yields of 1-13% [140]. The cationic Rh(I) complexes of the chiral ligands (10a) and (10b) catalyze the asymmetric hydrogenation of acetamido-acrylic acid derivatives and itaconic acid. The configuration of the product is reversed if (10b) is used instead of (10a) and the reaction is faster and the optical yields higher (84%) with the former ligand. The ligands (10c) and (10d) give catalytically in-active Rh(I) complexes [141].

10a, $R = PBu_2^t$ 10b, $R = PPh_2$ 10c, $R = AsPh_2$ 10d, $R = AsMe_2$

The chiral ligands (11)-(13) were prepared and used as $Rh(COD)(L)_{2}^{+}[L = (11)]$ or $Rh(COD)(L_{2})^{+}[L_{2} = (12), (13)]$ complexes for the asymmetric hydrogenation of α -acetamidoacrylic acid. Highest optical yields (76%) were achieved with (13)[142].

11, o- and p-isomers 12, o- and p-isomers (R)-Phenphos (14) has been synthesized in good overall yield from (S)-mandelic acid. Optical yields up to 88% have been observed with this ligand in catalytic asymmetric hydrogenation. The Rh complexes of this chiral phosphine and those of racemic (15) and (16) with dehydroamino-acids have been investigated by ³¹P-NMR spectroscopy [143].

The chiral 1,2-diphosphine ligands (17)-(20) have been synthesized. Rh(NBD)(diphosphine)⁺ complexes containing (17), (18) [144] or 20 [145] as ligands were found to be effective catalysts for the asymmetric hydrogenation of dehydro amino acids and similar prochiral olefins (optical yields up to 92%). The corresponding Rh complex of (19) was practically inactive as a hydrogenation catalyst [144] and low optical yields were observed for the hydrogenation of CH₂=CRCOOH (R = CH₂COOH, Ph) with (17) and (20) [145].

 $\begin{array}{c} \mathsf{ROCH}_2 \\ \mathsf{C} \\ \mathsf{C}$

(+) and (-) MeNorphos (21) and (22) were prepared and used as optically active ligands in asymmetric hydrogenation with catalysts obtained in situ from $Rh_2(COD)_2Cl_2$ and the phosphine. (Z)- α --(N-acetamido)cinnamic acid and itaconic acid are hydrogenated with 92 and 60% enantiomeric excess, respectively [145a].

A number of chiral biphosphines related to (R,R)diPAMP (7) were prepared and evaluated in asymmetric hydrogenation with Rh complexes. Many variants were closely equivalent but none was superior to the parent compound. Some monophosphines containing sulfone substituents permitted to use them in aqueous solutions. Several new DIOP analogs were tried in the hydroformylation of CH₂=CHOAc but only modest enantiomeric excesses were achieved [146].

The axially dissymmetric bisphosphine (23) yields efficient catalysts for the asymmetric hydrogenation of α -aminoacrylic acids and esters, with optical yields up to 98% [147].

The structure and absolute configuration of Rh(NBD)[(+)-589-(R)-2,2'-bis(diphenylphosphino -1,1'-binaphtyl](ClO₄), the precursor of an enantioselective hydrogenation catalyst was determined [148]. The ditertiary phosphine 2,2'-bis(diphenylphosphino)biphenyl was used as a ligand in hydrogenating dehydroamino acids with Rh complexes as catalysts. By the use of the (+) 589 form of this ligand modest optical yields (< 13%) were achieved [149].

The chiral phosphine (24) and phosphinite (25) were prepared and used a ligands in Rh based complex catalysts for the asymmetric hydrogenation of prochiral unsaturated carboxylic acids. Optical yields did not exceed 35% [150].

The chiral phosphorous ligands (26-30) were prepared starting from carbohydrates. Homogeneous asymmetric hydrogenations of several prochiral olefins were carried out using Rh(I) complexes of these ligands formed <u>in situ</u>. Optical yields of 29-67% were achieved with the ligand (30) [151].

30

The two chiral diphosphinites (31) and (32) were prepared from tartaric acid and used as ligands for the preparation of the complexes $[RhL_2Cl]_2$ ($L_2 \approx 31$ or 32). These complexes were used as catalysts for the asymmetric hydrogenation of dehydroamino acids, citraconic acid and 2-phenyl-1-butene [152].

The chiral aminophosphine-phosphinites (S)-prolophos (33) and (S)-butaphos (34) have been prepared. The Rh(I) complexes of these ligands $Rh(COD)(L_2)^+$ (L₂ = 33 or 34) have been used as catalysts for the asymmetric hydrogenation of α -acetamido acrylic acid, α -acetamido cinnamic acid and itaconic acid [153].

 $Rh_2(COD)_2Cl_2$ and $Rh_2(CO)_4Cl_2$ react with 1,2:3,4-di-O-isopropylidene- β -D-galactopyranose 6-(Et phosphite) and 6-deoxy-1,2-O-isopropylidene- β -D-glucofuranose cyclic 3,5-phosphite to give Rh(I) complexes which are hydrogenation catalysts for itaconic and α -acetamido cinnamic acids [154].

Asymmetric hydrogenation of various dehydro dipeptides was carried out using Rh complex catalysts with a variety of chiral diphosphine ligands. Pyrrolidinodiphosphines [e.g. Ph-CAPP (35), p-BrPh-CAPP (36) (+)-and (-)-BPPM (37a and b) and diPAMP (7) exhibited excellent stereoselectivities, whereas (+)- and (-)-DIOP (1a and 1b), chiraphos (38), prophos (39) and BPPFA (40) gave only poor results. Accordingly, a series of new chiral pyrrolidinodiphosphines were prepared (41a-h) in which the N-atom of (+)-PPM (42) is linked up with a variety of α -aminoacyl groups. The stereoselectivities attained by these α -AacPPMs are as high as those obtained with other pyrrolidinodiphosphines [155].

R' = H, Z-(S)-phenylalanyl R"= Z.H

The chiral N-(N-acetyldehydrophenylalanyl)- β -amino alcohol benzyl ethers (43) were hydrogenated with Rh catalysts containing chiral or achiral phosphine ligands:

Ph2P

BPPFA

High double asymmetric inductions (77-97\$) were achieved with Ph-CAPP (35), (+)-BPPM (37a), (+)-and (-)-DIOP (la and lb) as chiral ligands [156]. Dehydrotripeptides (44) were employed as substrates in the asymmetric hydrogenation catalyzed by cationic chiral Rh-diphosphine complexes $Rh(NBD)(L_2)^+$ ($L_2 = (+)-$ and (-)--BPPM (37a and 37b), (+)- and (-)-DIOP (la and lb), Ph-CAPP (35) and diPAMP (7). Enantioselectivity was strongly influenced by the structure of the N-protecting group X. By far the best results were obtained with X = tBuOCO [157].

Two analogs of leucine-enkephalin (a biologically active pentapeptide) were synthesized by the coupling of dipeptide and tripeptide units which both were obtained by the asymmetric hydrogenation of the corresponding dehydropeptides. $Rh(NBD)(L_2)^+$ complexes containing chiral diphosphines were used as catalysts $[L_2 = diPAMP (7),$ Ph-CAPP (35)] [158]. Using the complex $[Rh(COD)(diPAMP)](BF_4)$ as catalyst (diPAMP = 7) the bisdehydropeptide (45) has been hydrogenated to the S,S-dipeptide with over 95% optical purity [159]. Diastereoselective hydrogenation of N-acetyl dehydro peptides was studied using $Rh(PPh_3)_3$ Cl [160].

45

Hydrogenation of the unsaturated alcohols (46) and (47) with $[Rh(NBD)(Ph_2PCH_2CH_2CH_2CH_2Pph_2)](BF_4)$ affords a high degree of stereoselection. The stereochemical course of the two reductions is opposite and can be rationalized by assuming a pseudo-equatorial conformation for the Me group in the intermediate $H_2Rh(olefin)(bis-phosphine)^+$ complex [161]. The monosubstituted olefins styrene, tetramethylammonium propenoate and N-vinylacetamide were reduced with D₂ in the presence of chiral Rh-diphosphine complexes containing (-)-DIOP (1b), diPAMP (7) and chiraphos (38). No enantioselectivity was observed with styrene. Optical yields ranged between 11-51% for the other two substrates but the configurations of the

products did not correlate with those obtained with the same chiral ligands if α -acetamidoacrylic acid was reduced with D₂. Using HD as reductant a modest regioselectivity (1.36:1) in favor of the α -deuterated product was observed with (Z)- α -acetamidocinnamic acid as substrate [162]. Complexes generated in situ from HRh(CO) (PPh₃)₃, Rh₆(CO)₁₆ or Rh₄(CO)₁₂ and diphosphines are homogeneous catalysts for the hydrogenation of α , β -unsaturated aldehydes into saturated aldehydes. In the presence of the chiral phosphines (-)-DIOP (lb), (48), (49) and (50) neral and geranial are hydrogenated to citronellal with up to 71% optical yield [163].

Asymmetric hydrogenation of 2-phenylbutene isomers to (S)-(+)-2--phenylbutane was accomplished with two catalytic systems: Et₃Al + Co(acac)₂ + P(nmen)Ph₂ and Et₃Al + bis(L-isoleucine)Co. The highest

optical yield obtained with the former system was 25.8% [164].

The reuse of Rh(I) complexes with ditertiary phosphines as ligands in the hydrogenation of 2-acetamidoacrylic acid has been investigated [165].

4. Hydrogenation of Dienes and Acetylenes

a) Co, Rh and Ir Catalysts

Selective hydrogenation of nonbranched 1,3-diolefins mainly to <u>cis</u>-2-olefins was carried out in THF + EtOH with $Co(bpy)_2X$ catalysts (X = Cl, Br, I) prepared in situ from CoX_2 , bpy and Zn. Activity and selectivity of the catalysts depend on the time when butadiene and H₂ are introduced to the catalyst [166].

Toluene solutions of $\operatorname{Rh}_4(\operatorname{CO})_{12}$ and $\operatorname{Rh}_4(\operatorname{CO})_{12}$ anchored on $\gamma - \operatorname{Al}_2 \operatorname{O}_3$ catalyze the hydrogenation of <u>trans</u>-1,3-pentadiene to $2-\underline{\operatorname{trans}}$ -pentene at 60-80°C and 1 bar H₂. Anchoring decreases the reaction rate but increases the stability of the catalyst which decomposes in solution after long reaction times to metallic Rh [167]. Alkynes are converted to <u>trans</u> olefins at 20°C and 1 bar H₂ by the dinuclear complex ($\mu - H$)₂Rh₂[P(OPr¹)₃]₄. The stereo-chemistry of H addition is governed by formation of the intermediate bridged vinyl complex (51) [168]:

Methanol solutions of the dinuclear cationic complexes $Rh_2(CO)_2(Ph_2ECH_2EPh_2)_2(\mu-X)^+$ (X = Cl, Br; E = P, As) and $Ir_2(CO)_3(Ph_2PCH_2PPh_2)_2Cl^+$ are active catalysts for the hydrogenation of alkynes to alkenes, and alkenes to alkanes. Neutral complexes with pseudohalide ligands were also studied, but only the cyano-complex $Rh_2(CO)_2(Ph_2PCH_2PPh_2)_2(CN)_2$ and its arsine analog have significant catalytic activity [169]. A kinetic study of the reaction between $HIr(CO)(PPh_3)_3$ and H_2 or PhC=CH provided evidence for the 14-electron intermediate $HIr(CO)(PPh_3)$, as well as for a direct attack of H_2 on the 18-electron $HIr(CO)(PPh_3)_3$ [170].

 $\mathbf{516}$

b) Ni, Pd and Pt Catalysts

Cyclic diolefins were hydrogenated selectively to monoolefins with a catalyst prepared from Ni(acac), Et₃Al₂Cl₃ and PPh₃ [171]. Amine complexes of palladium fixed on silica were prepared by reaction of Na₂PdCl₄ with silica containing (3-aminopropyl)silyl and [(3-aminopropyl)amino]silyl moieties. The first catalyst was characterized by monodentate and the second by bidentate binding of Pd. A highly selective catalyst for hydrogenation of 1-heptyne to 1-heptene was obtained by adding Ph3P to the bidentate Pd complex catalyst. The activity of both hydrogenation catalysts exceeded that of Pd/SiO_2 [172]. Two series of phosphines PR_3 (R = $= C_{10}H_{21} - C_{19}H_{39}$ and $P(C_{6}H_{4}R^{1}-p)_{3}$ ($R^{1} = Et - C_{9}H_{19}$) which form very soluble complexes, were used to prepare \underline{cis} -[PtL₂Cl₂] and <u>trans-[PdL₂Cl₂]</u> complexes (L = PR₃, P(C₆H₄R¹- \overline{p})₃). The effect of the phosphines on the selective hydrogenation catalysts formed with SnCl, for polyunsaturated olefins was reported [173]. Some heteronuclear Pt clusters like Pt₂Co₂(CO)₈(PPh₃)₂ and Pt(CNCy)₂[CpMo(CO)₃]₂ catalyze the hydrogenation of terminal acetylenes to olefins and alkanes. The activity and selectivity of the catalysts is low. The Co-containing mixed cluster rearranges under the reaction conditions to $Pt_5(CO)_6(PPh_3)_4$ [174].

c) Cr, Ru, Os, Cu and U Catalysts

The hydrogenation of α -terpinene and 2,3-dihydroanisole catalyzed by (phenanthrene)Cr(CO)₃ at 80^oC and 7 bar H₂ has been described. Ketones accelerate the reaction [175]. The photochemical hydrogenation of NBD in the presence of Cr(CO)₆ yields nortrycyclene and nornbornene. Conjugated dienes give exclusively 1,4 hydrogenated products [176].

Divinylbenzene-styrene copolymers were diphenylphosphinated and complexed with $\operatorname{Ru(CO)}_2(\operatorname{PPh}_3)_2\operatorname{Cl}_2$ to prepare a supported catalyst which gives 93.3% selectivity to cyclopentene in the hydrogenation of cyclopentadiene at 150°C compared with 97.4% selectivity for the unsupported complex [177]. A complete cycle of reactions has been described for the reduction of an alkyne to an alkene by H₂ in the presence of a metal cluster [178]:

<u>cis</u> and <u>trans</u>

The complex $Cu_2(OOCPh)_2(PhC_2Ph)$, formed from Cu(I) benzoate and diphenylacetylene absorbs H_2 at room temperature to yield 1,2-diphenylethane. The reaction is only stoichiometric even with an excess of PhC_2Ph at $100^{\circ}C$ and 50 bar [179].

The black reaction product obtained from the reaction between tBuLi and UCl₄ catalyzes the hydrogenation of alkenes and alkynes to alkanes at a slow rate at room temperature [180].

5. Hydrogenation of Arenes

Kinetic data were obtained for the hydrogenation of benzene and 15 mono- and disubstituted benzenes with $(\pi - C_3H_5)Co[P(OPr^1)_3]_3$ as catalyst and a linear Hammett plot was established. The rate determining step is either the addition of H_2 to the benzene-catalyst complex or a rearrangement within the benzene-catalyst- H_2 complex [181, 182, 183]. Rhodium complexes with amino acids catalyzed the hydrogenation of aromatic hydrocarbons, phenols and heterocyclic compounds [184]. Supported complexes prepared from $Rh_2(NBD)_2Cl_2$ and phosphinated polydiacetylene or silica (SIL- $CH_2CH_2CH_2PPh_2$) are efficient catalysts for the hydrogenation of arenes at $30^{\circ}C$ and 80 bar [185].

6. Hydrogenation of Carbonyl Compounds

 α , β -Unsaturated ketones are reduced by HFe (CO)⁻₄ in THF to saturated alcohols. Isolated C=C double bonds or saturated ketones do not react [186]. The trinuclear cluster (μ -H)₂Ru₃(CO)₆ (μ -PPhCH₂PPh₂) catalyzes the hydrogenation of cyclohexanone to cyclohexanol at 90^oC and 100 bar [187].

Hydrogenation of benzaldehyde is catalyzed by $Rh_6(CO)_{16}$ in MeOH solution at $110^{\circ}C$ and 70 bar ($H_2:CO = 4:1$) in the presence of NaHCO₃ as base. The reaction is first order in PhCHO, 0.92 order in $Rh_6(CO)_{16}$ and is inhibited by CO. A detailed kinetic analysis supports a cluster catalytic mechanism. The slow step is a Rh-Rh bond cleavage resulting in a site of coordinative unsaturation where PhCHO bonds prior to hydrogenation [188]. Neutral Rh(I) hydride complexes $HRh(PR_3)_n$ (R = iPr, n = 3; R = Cy, n = 2) catalyze the reduction of ketones by H2 or by transfer hydrogenation with iPrOH as H source. If fully alkylated diphosphines were used as ligands, the cationic Rh(I) complexes [Rh(NBD)(P-P)](ClO₄) proved to be remarkably active $[(P-P) = iPr_2P(CH_2)_pPPr_2^i, n = 3,4]$. With these catalysts ketone hydrogenation was complete within minutes and also aldehydes could be hydrogenated without decarbonylation [189]. Benzaldehyde is hydrogenated at $40-80^{\circ}C$ and 1.4-4.5 bar H₂ with (NBu₄)([Pt₃(CO)₆]₅ as catalyst precursor. Products are benzylalcohol (at lower pressure) or benzene and methanol (at higher pressures). The active catalyst is probably a Pt cluster as suggested by kinetic studies [190].

a) Asymmetric Hydrogenation

The catalyst formed in situ from $Rh_2(NBD)_2Cl_4$ and (+)-DIOP (1a) catalyzes the hydrogenation of $\alpha - (N, N-dialkylamino)alkyl$ aryl ketones to give enantioselectivities of up to 95% [191]. Chiral, N-substituted diphenylphosphinoacetamides (53) and (54) were used as ligands in Rh(I) complex catalysts for hydrogenation of acetophenone and styrene in the presence of strong bases. The catalytic activity was enhanced significantly if a separate aqueous phase was present [192].

The tetraalkyl analogs of DIOP : (-)-EtDIOP (55), (-)-iPrDIOP (56) and (-)-CyDIOP (57) were prepared. Cationic Rh(I)complexes of these chiral ligands (P-P), $[Rh(NBD)(P-P)](ClO_4)$ proved to be highly active catalysts for asymmetric hydrogenation of ketones. In the hydrogenation of PhCOCONHCH₂Ph 77% o.y. was achieved using (-)-CyDIOP [193,194].

The new ferrocenylphosphines (58) ($R = NR^1R^2$; R^1 , $R^2 = H$, Me, Et, allyl, Me₂NCH₂CH₂, MeNHCH₂CH₂, HOCH₂CH₂; or NR^1R^2 = pyrrolidino, piperidino, 4-methyl-1-piperazinyl) were synthetized. The Rh complex of the ferrocenylphosphine (59 = BPPFOH) was an effective catalyst for asymmetric hydrogenation of prochiral carbonyl compounds (highest o.y. 95%) [195].

7. Hydrogenation of Nitro Compounds

Co(dmg), and related Co(II) complexes catalyze the reduction of aromatic nitro compounds to give aromatic amines in 92-100% yield [196]. EPR spectra of dimorpholine cobaloxime and the rate of nitrobenzene hydrogenation catalyzed by this complex has been studied in different solvents. Catalytic activity varied videly whereas magnetic parameters showed no substantial variation with the solvent [197]. The complex $Pd_2(PPh_3)_2Cl_4$ was used as a homogeneous catalyst for the reduction of PhNO2 and p-ClC6H4NO2 with H2 in basic EtOH. A reaction intermediate $Pd(PPh_3)(PhNO_2)Cl_2$ was isolated and characterized. Reduction of PhNO, produced 75% aniline, 5% azobenzene and 15% azoxybenzene under atmospheric pressure whereas under high pressure the reduction product contained aniline (95%) only [198]. Nitrobenzene hydrogenation and reductive alkylation with isobutanal were studied with catalysts formed from K₂PdCl₄, K₃RhCl₆, K₂PtCl₆, K₃Fe(CN)₆ and K₃Co(NO₃)₆.5H₂O complexed on anion exchange resins. The greatest activity was observed with Pd complexes on polytrimethylolmelamine [199].

8. <u>Miscellaneous Hydrogenations</u>

In the presence of H₂, methane can be a by-product in the carbonylation of MeOH to AcOH using iodine-promoted homogeneous
Rh catalysts. The CH_4 is formed by hydrogenolysis of MeOH [200]. Cationic Rh complexes of the type $[Rh(NBD)(PR_3)_2](ClO_4)$ catalyze the "abnormal" ring-opening hydrogenation of 3,4-epoxybut-l-ene to but-2-en-1-ol, the main product is, however, crotonaldehyde produced by isomerization [201]. The reaction of CF_3CN with $H_2Os_3(CO)_{10}$ gives (60) and the treatment of this complex with H_2 at 49 bar and $140^{O}C$ leads to the formation of (61), (62) and (63). These reactions suggest a model for the hydrogenation of a nitrile ligand [202].

60

61

9. Dehydrogenations

The complexes $\operatorname{Ru}(\operatorname{OOCCF}_3)_2(\operatorname{CO})(\operatorname{PPh}_3)_m(L-L)$ where $(L-L) = 1,2-(\operatorname{Ph}_2\operatorname{P})_2\operatorname{C}_6\operatorname{H}_4$ (m = 0,1), $\operatorname{Ph}_2\operatorname{PCH}_2\operatorname{CH}_2\operatorname{AsPh}_2$ (m = 1) and $\operatorname{Ph}_2\operatorname{P}(\operatorname{CH}_2)_n\operatorname{PPh}_2$ (n = 3,4; m = 0) have been prepared and used as catalysts in alcohol dehydrogenation and ketone hydrogenation. These complexes are more active than $\operatorname{Rh}(\operatorname{OOCCF}_3)_2(\operatorname{CO})(\operatorname{PPh}_3)_2$. All of them, however, deactivate by decarbonylation of the product aldehyde or ketone to form dicarbonyl complexes [203]. An immobilized Rh complex catalyst was prepared by reacting silica with $\operatorname{Ph}_2\operatorname{P}(\operatorname{CH}_2)_2\operatorname{Si}(\operatorname{OEt})_3$ and treating the phosphinated silica with $\operatorname{Rh}_2(\operatorname{OAc})_4$. This catalyst was used

for the dehydrogenation of iPrOH at $82^{\circ}C$ in the liquid phase [204]. Photolysis decreases the activation energy of iPrOH dehydrogenation with RhCl₃.3H₂O + SnCl₂.2H₂O + LiCl homogeneous catalysts from 117 to 11 kJ mol⁻¹. The quantum efficiency exceeds unity in the u.v. region. The formation of catalytically active species by the photocleavage of Rh-Sn bonds is assumed [205].

Reaction of singly charged atomic Ni ions with n-butane in the gas phase yields $Ni(C_2H_4)^+_2$ via a 1,4 process. Ion cyclotron resonance studies suggest that loss of H₂ occurs by oxidative addition to the internal C,C-bond followed by a β -H transfer to the metal [206]. The decomposition of formic acid into H₂ and CO₂ is catalyzed by H₃Pt₂(PEt₃)⁺₄ at 20^oC in the presence of HCOONa [207]. Formato and hydrido complexes are the intermediates (L = PEt₃):

The cluster $(Bu_4N)_2[Fe_4S_4(SPh)_4]$ transfers electrons from PhLi to protons from PhSH in a homogeneous system, resulting in the generation of H₂ [208]:

2PhLi + 2PhSH ----- PhPh + H₂ + 2PhSLi

10. Hydrogen Transfer Reactions

a) Alkanes as Hydrogen Donors

Cycloalkanes $C_n H_{2n}$ (n = 6,7,8) are dehydrogenated at $\leq 80^{\circ}$ C to the corresponding cycloalkenes by $H_7 \text{Re}(\text{PAr}_3)_2$ (Ar = p-FC₆H₄, p-MeC₆H₄, Ph) in the presence of 3,3-dimethylbutene as a H-acceptor [209]. The same system has been shown to transform n-pentane at 80° C to $H_3 \text{Re}(\eta^4 - \text{trans-penta-1}, 3 - \text{diene})(\text{PAr}_3)_2$. (MeO)₃P converts this complex with high selectivity to 1-pentene [210]. $H_2 \text{Ir}(\text{PPh}_3)_2 \text{S}_2^+$ (S = H₂O or acetone) reacts with cyclooctane or cyclooctene in the presence of 3,3-dimethyl-1-butene to give $\text{Ir}(\text{COD})(\text{PPh}_3)_2^+$. This system constitutes the first example of the dehydrogenation of an alkane by a transition metal complex which proceeds by a reverse-hydrogenation mechanism [211]. The coordinatively unsaturated $H_2 \text{Rh}_2[\text{P}(\text{OPr}^1)_3]_4$ dehydrogenates 1,3-cyclohexadiene to benzene in a

stoichiometric reaction, the other product is $(\eta^3 - cyclohexenyl)Rh [P(OPr^i)_3]_2$ [211a].

Me groups bound to Rh in a complex are dehydrogenated to μ -CH₂ groups by acetone and isopropanol is formed. Only certain H-acceptors are effective in this reaction [212].

b Hydrogenation of C=C Bonds

The complexes $[Rh(NBD)L_2](ClO_4)$ and $[Rh(NBD)L(PPh_3)](ClO_4)$, where L = substituted quinolines, catalyze the hydrogenation of olefins and the H-transfer from iPrOH to olefins and diolefins. No clear relation between the basicity of the quinoline ligand and the catalytic activity was found [213]. The rate of H-transfer from a secondary alcohol to an α , β -unsaturated ketone, catalyzed by $HRh(PPh_3)_4$ depends on the order in which reactants are added to the catalyst. The hydroxylic H is regioselectively transfered to the α -carbon of the ketone [214,215].

c) Hydrogenation of C=O Bonds

The H-transfer reaction from iPrOH to cyclohexanones is catalyzed by Rh(III) and $Ir(III) + SnCl_2$ systems at $83^{\circ}C$. Ir was found to be the more active [216]. Ketones and olefins have been reduced at $83^{\circ}C$ by H-transfer from iPrOH catalyzed by complexes formed <u>in</u> <u>situ</u> from $Rh_2(COD)_2Cl_2$ and various tertiary phosphines. PCy_2Ph was found to yield the most active catalyst system. Reducing 4-t-butyl-cyclohexanone the <u>cis</u> alcohol is the favored product [217]. Methanol, cholesterol and citronellol are dehydrogenated to the corresponding carbonyl compounds in the presence of $Ru(PPh_3)_3Cl_2$ and cyclohexanone as a H acceptor at 140°C. Lactones are obtained from sugars under these conditions [218].

Supported complexes were prepared from $[Rh(NBD)_2](ClO_4)$ or Rh(NBD)L (where L = imidazole-ring containing ligand) and used as catalysts for the H-transfer reactions from iPrOH to acetophenone or 1-hexene [219]. Rh complexes catalyzed the H-transfer from Me_2 CHOH to cyclohexene or (less efficiently) to PhCOMe. The highest yields were obtained using $[MeORh(COD)]_2$ in the presence of (64) and (65) [220]:

Ketones and aldehydes are reduced in good yields to alcohols by formic acid with $\text{RuCl}_2(\text{PPh}_3)_3$ as catalyst at 125°C. No solvent is necessary [221]:

$$\begin{array}{c} O \\ \blacksquare \\ RCR' + HCOOH \\ \hline \\ RCHR' + CO_{2} \end{array}$$

Both $HRh(CO)(PPh_3)_3$ and a catalyst made in situ from $RhCl_3.3H_2r$ PPh₃, and Na_2CO_3 catalyze the reaction of aldehydes with primary alcohols to give esters, together with alcohols formed by reduction of the aldehydes. The proportion of esters is increased by addition of an efficient H acceptor [222].

d) Asymmetric Hydrogen Transfer Reactions

In the H-transfer from chiral alcohols like (-)-2-exo, 3-exo--camphandiol to acetophenone, catalyzed by $H_4 Ru_4 (CO)_8 (PBu_3)_4$ a very slight enantioselection (<1%) has been observed. This suggests the simultaneous presence of the reagents in the catalytic intermediate [223].

H-transfer from racemic alcohols to prochiral ketones in the presence of $H_4Ru_4(CO)_8[(-)-DIOP]_2$ has been examined [(-)-DIOP = 1b]. Long reaction times were necessary and low optical yields were observed [224]. Asymmetric transfer hydrogenation of prochiral ketones by iPrOH using Ir complexes with chiral phosphines $[(nmen)PPh_2, chiraphos (38), prophos (39) and (+)-DIOP (1a)]$ has been achieved. Best results (o.y. = 30%) were achieved in case of acetophenone and prophos [225].

Enantioselective dehydrogenation of prochiral diols to lactones could be achieved by using $Rh_2[(-)-DIOP]_3Cl_4$ as catalyst and benzalacetone as H-acceptor [(-)-DIOP = 1b]. The catalyst was only active in the presence of Et_3N . Probably due to the high temperatures (110-150°C) optical yields were low (<15%) [226]:

The disproportionation of aldehydes into acids and alcohols (Cannizzaro reaction) is catalyzed by phosphine-substituted derivatives of $H_4Ru_4(CO)_{12}$ in the presence of water. Using the (-)-DIOP (1b) substituted cluster a small asymmetric induction (1.7%) is observed in the formation of the acid [227].

e) Hydrogen Transfer to N or Halogen-containing Compounds

Aromatic nitro compounds were reduced by secondary alcohols like cyclohexanol to amines with Rh complexes as catalysts. Potassium acetate as a base was necessary for the reaction. The PPh₃/Rh ratio markedly influenced the catalytic rate, maximum activity was obtained at a ratio of 1/1 [228]:

$$R = -NO_2 + 3$$
 CH-OH $\frac{150 \text{ °C}}{150 \text{ °C}}$ $R = -NH_2 + 3$ C= 0 + 2 H₂O

Nitrobenzene reacts with ethanol and higher alcohols to form 2-Meor 2,3-dialkylquinolines, respectively, in the presence of Rh and Mo complexes. The best yields are obtained with about equimolar mixtures of Rh and Mo at $\approx 180^{\circ}$ C. The reaction mechanism probably involves dehydrogenation of the alcohols to aldehydes, reduction of nitrobenzene to aniline and successive condensations and aromatization [229]:

The N-O bond of hydroxylamine derivatives is reductively cleaved by dithiols in presence of Fe(II) to give the corresponding amines and alcohols (or water). The reaction between O-benzylhydroxylamine (66) and dihydrolipoic acid (67) has been investigated in detail [230]:

 ${\rm Ru(PPh}_3)_3{\rm Cl}_2$ was shown to catalyze H-transfer from halogen--free alcohols to $\alpha-x_3{\rm C}-{\rm carbinols}$ and to give selectively dihalo-

methyl derivatives (X = Cl, Br). Since α -trihalomethyl alcohols can be conveniently prepared from haloforms and aldehydes this catalysis is of synthetic value [231]:

Aryl bromides and iodides are hydrodehalogenated by aqueous HCOONa under phase transfer conditions in presence of $Pd(PPh_3)_2Cl_2$ and PPh₃ (X = Br, I):

Arx + HCOONa ArH + NaX + CO₂

Upon substitution of HCOONa by DCOONa in D_2^0 the corresponding deuterated aryl compounds were obtained [232].

11. Reductions without Molecular Hydrogen

a) Transition Metal Hydrides

Hydrozirconation of dienols, followed by acid hydrolysis, gave selectively alkenols with the double bond remote from the OH group intact. For example 1,7-octadien-3-ol treated with $Cp_2Zr(H)Cl$ in C_6H_6 at $10^{\circ}C$ gave, after hydrolysis of the organozirconium comlex with HCl, 1-octen-3-ol as the sole product in 69% yield [233]. $[(\eta \ 5-C_5Me_4Et)HTaCl_2]_2$ reduces MeCN to give a dinuclear complex containing the bridging NCHMe unit [234]. Ammonium-modified silica SIL- $(CH_2)_3$ -NEt_3.Cl⁻ and poly(styrene-divinylbenzene) resin incorporating ammonium groups $(\underline{P}-CH_2-NEt_3,Cl^-$ were treated with a CH_2Cl_2 solution of $(HNEt_3)[HFe_3(CO)_{11}]$. Ion exchange supported the anionic clusters onto the functionalized solids. These products transformed nitrobenzene into aniline under mild conditions [235].

In the stoichiometric hydrogenation of $Ph_2C=CH_2$ by $HCO(CO)_4$ a CIDNP effect has been observed which proves that the reaction proceeds by a radical pair mechanism [236]. The rates of hydrogenation of several styrene derivatives by stoichiometric amounts of $HCO(CO)_4$ were measured and compared. The results support the previously proposed geminate radical pair mechanism [237]. Rate data for the stoichiometric radical hydrogenation of four conjugated aromatic olefins with $HOO(OO)_4$, $DCO(OO)_4$, $HMn(OO)_5$ and $DMn(OO)_5$ show, that these reactions proceed by similar mechanisms. The kinetic isotope effect varied from 0.43 to 2.02 and the rates were found to be two orders of magnitude slower for the Mn complexes than the Co complexes [238]. Ph_3COH is hydrogenated by $HCO(CO)_4$ quantitatively to Ph_3CH , catalytic quantities of $HBF_4.Et_2O$ increase the rate by a factor of more than 1000. Ph_3C^+ and Ph_3C^- were proposed as intermediates [239].

A marked inverse kinetic isotope effect has been observed for the hydrogenation of NBD by $H_2Ir(PPh_3)_2(Me_2CO)_3^+$ and its D_2 analogue [240].

b) Low Valent Transition Metal Complexes

Reduction of bicyclo [4.2.1]non-3-en-9-one (68) by Ti(II) gave mostly the expected diastereoisomeric pair of alcohols, but reduction by Ti(O) gave in addition olefinic, saturated and partially saturated olefinic dimers and pinacol dimers [241]. In the reaction of Cp₂Ti(CO)₂ with phtalazine (69) electron transfer from Ti to the organic ligands leads to a radical species which may dimerize or abstract H atoms from the THF solvent to give complex (70). This type of reduction is important in the radical chemistry associated with coal liquefaction [242].

Benzhydrols, R_2 CHOH (R = Ph, p-tolyl, p-anisyl, 4-ClC₆H₄) were reduced in mesitylene containing PhCOCl and Fe(CO)₅ to yield the respective diphenylmethanes and 1,1,2,2-tetraphenylethanes. Similarly the compounds PhC(OH)RR' (R = Ph, p-tolyl, p-anisyl, 4-ClC₆H₄; R' = H, p-anisyl, 4-ClC₆H₄) were converted to PhCHRR¹ [243]. The nature of the complex reducing agents prepared from Ni or Zn salts, NaH and a tertiary alcohol abbreviated as NiCRA and ZnCRA, respectively has been investigated in detail. It appears that the metal is formally in a zero-valent oxidation state in both reagents [244].

c) Inorganic Reductants in the Presence of Transition Metal Complexes

The hydrogenation of olefins by LiAlH_4 is catalyzed by UCl₃ dissolved in THF [245]. Deoxygenation of 7-oxabicyclo [2.2.1] hepta--2.5-diene systems like (71) to substituted benzenes was achieved by the use of TiCl₄ + LiAlH₄ [246]:

Complexes of the type $Mo_2O_2(\mu-S)_2$ (cys-containing-dipeptide) (72) and (73) catalyze the reduction of azobenzene to hydrazobenzene by NaBH₄ in protic media. Analogous complexes (74) having a 5-membered chelation of the cysteine residue were inactive [247].

The combination of Co(II) halides with NaBH, has been frequently employed to reduce functional groups which are inert to NaBH, alone. It has recently been found that if used to reduce nitriles to amines, cobalt boride (Co₂B) is formed which coordinates to the nitrile and catalyzes its heterogeneous reduction by NaBH₄. In accordance with this, tBuNH₂.BH₃, a reagent inert to nitriles could be used to reduce benzonitrile in the presence of Co_2B [248]. NaBH₄ + RhCl₄ + RhCl₃.3H₂O in EtOH reduce aromatic nuclei to the corresponding saturated cyclic compounds at 30-40°C. The reaction is stoichiometric and the preincubation of the aromatic substrates with rhodium chloride before addition of NaBH_A is essential for the reduction [249]. Hydride can be added to dicatio-nic $(\eta^6$ -benzene complexes like $(\eta^5-c_5Me_5)M(\eta^6-c_6H_6)_4^{2+}$ (M = Rh,Ir) or $(\eta^6-c_6H_6)_2Ru^{2+}$ to give the corresponding η^4 -cyclohexadiene complexes. In the presence of benzene the initial η^6 -benzene complexes can be regenerated by $BF_3.2H_2O$ and cyclohexene is liberated (yields 60-94%). This represents a cycle where benzene is hydrogenated to cyclohexene by first adding two hydrides and then two protons and which is catalytic in the platinum metal complex [250].

Triisobutylaluminium reduces α , β -unsaturated ketones to saturated ketones in the presence of catalytic amounts of bis (N-methylsalicylaldimine)Ni. A Ni hydride species is regarded as the active catalyst. The complex [(-)-DIOP]NiCl₂ [(-)-DIOP = (lb)] is not effective in this reduction [251]. The C=C bond is reduced in α , β -unsaturated carbonyl compounds by Bu₃SnH in the presence of Pd(PPh₃)₄ with almost complete chemoselectivity if a radical scavenger is added. The results suggest Bu₃SnH to act as a hydride donor [252]. Acetic acid or ZnCl₂ promote the reduction of α , β --unsaturated carbonyl compounds by Bu₃SnH catalyzed by Pd(PPh₃)₄. Proton donors (acetic acid, p-nitrophenol) also promote the hydrogenolysis of alkyl aryl ethers (75) and allyl carbamates (76) with Bu₃SnH [253]:

Aro
$$\checkmark$$
 + Bu₃SnH + HX \rightarrow AroH + \checkmark H + Bu₃SnX
75
RNHCOO \checkmark + Bu₃SnH + HX \rightarrow RNH₂ + CO₂ + \checkmark H + Bu₃SnX
76

Allylic acetates (like 77) and allylic amines (like 78) can be reductively cleaved by Bu_3SnH in the presence of $Pd(PPh_3)_4$. The reaction is highly chemoselective, other functional groups like aldehydes and nitriles are unaffected [254]:

The combination of $Pd(PPh_3)_4$ and $LiBHEt_3$ provides an effective system for the reductive removal of allylic functional groups like ethers, sulfides, sulfones, selenides and silyl ethers [255]:

d) Reduction of Carbonyl Compounds via Hydrosilylation

4-tert-Butylcyclohexanone reacts with Et₃SiH in high yield to provide predominantly (up to 95%) the more stable equatorial silyl ether in the presence of $Rh(PPh_3)_3Cl$ or $Ru(PPh_3)_2Cl_2/CF_3COOAg$. After hydrolysis, the corresponding alcohols are obtained [256]. Highly regioselective reduction of α , β -unsaturated carbonyl compounds giving the corresponding saturated carbonyls or allylic alcohols was effected by hydrosilylation catalyzed by $Rh(PPh_3)_3Cl$ followed by methanolysis of the resulting adducts. In general, monohydrosilanes afforded saturated carbonyl compounds while dihydrosilanes gave allyl alcohols [257].

Regioselective asymmetric reduction of prochiral α , β -unsaturated ketones (e.g. 79) to optically active allyl alcohols was performed via hydrosilylation catalyzed by Rh(I) complexes with (+)-BPPM (37a), (+)- and (-)-DIOP (la and lb) as chiral ligands. Optical yields up to 69% were achieved [258]:

Steroid 17-ketones were reduced to the corresponding alcohols by hydrosilylation with a hydrosilane $(Ph_2SiH_2, Ph_3SiH, n-C_5H_{11}SiH_3)$ in presence of the chiral Rh complex generated <u>in situ</u> from $Rh_2(COD)_2Cl_2$ and (+)- or (-)-DIOP (la or lb) followed by hydrolyzing the resulting silyl ethers. In certain cases relatively high yields of α -alcohols were obtained [259].

e) Organic Reductants in the Presence of Transition Metal Complexes

In the presence of $(\text{Et}_2\text{NCS}_2)_2\text{MoO}$ as catalyst at $40-80^{\circ}\text{C} \text{ Ph}_3\text{P}$ deoxygenates compounds containing heteroatom-0 bonds like Ph_3PAsO , Me_2SO and pyridine N-oxide [260]. The reduction of p-nitrobenzyl-chloride to p-nitrotoluene by ascorbic acid is catalyzed by Fe(TPP)CL in the presence of a phase transfer agent. The complex (TPP)Fe-CH_2C_6H_4NO_2-p is formed as an intermediate [261].

f) Photochemically Assisted Reductions

3,5-Disubstituted isoxazole derivatives (80) when irradiated in the presence of $Fe(CO)_5$ and H_2O (in a moist solvent containing an equivalent amount of water) undergo reductive cleavage of the

530

N-O bond to give β -aminoenones (81) in good yields. The same reaction may be performed by Fe₂(CO)₉ under thermal conditions (50^oC) [262]:

Irradiation of $H_4 Ru_4 (CO)_{12}$ or $H_2 Ru_4 (CO)_{13}$ in the presence of olefins effects their stoichiometric hydrogenation at $25^{\circ}C$ [263]. Photo-induced electron transfer from Cu^+ to electronically excited 10-Me-acridinium tetrafluoroborate in MeCN + H_2O solutions leads to Cu^{2+} and $10,10'-Me_2-9,9'$ -biacridane [264].

The photochemical reduction of methylviologen (MV) was sensitized by $\operatorname{Ru}(\operatorname{byp})_3^{2+}$ complexes bound to polystyrene beads with a polyoxyethylene spacer group [265]. The MV radical cation was detected by conventional resonance Raman spectroscopy in photoreductions of MV with monoprotonated proflavin or $\operatorname{Ru}(\operatorname{byp})_3^{2+}$ as sensitizers [266]. The photosensitized reduction of MV and dissolved O_2 with the aid of triethanolamine as a donor by $\operatorname{Ru}(\operatorname{byp})_3^{2+}$ adsorbed in a network of a water-swollen cation exchange resin has been studied. H_2O_2 is produced via O_2^- , which is formed by the reaction of the MV radical with O_2 [267].

g) Electroreductions

The electroreduction of CO_2 was catalyzed by the iron-sulfur clusters $[Fe_4S_4(SR)_4]^{2-}$ (R = PhCH₂, Ph). Formate was obtained preferentially, but considerable amounts of hydrocarbons (mainly C_3) were detected too [268]. The catalytic reduction of MeNC (to MeNH₂ and CH₄) and MeCN (to C_2H_6 and NH₃) has been carried out under controlled potential electrolysis with a Hg working electrode in the presence of $[Fe_4S_4(SPh_4)]^{2-}$ and $[Mo_2Fe_6S_8(SPh)_9]^{3-}$ [269]. The reduction of gem. dibromocyclopropanes with electrochemically

generated Cr(II) was studied [270]. The electrochemical reduction of deoxybenzoin with Cr salts in DMF leads primarily to hydrodimerization of the glycol. The chemical reduction by chromous salts is too slow to be of interest [271].

IV. Oxidation

1. Catalytic Oxidation of Hydrocarbons with 0,

a) General

Reaction rate pulsation has been observed during liquid-phase oxidation of hydrocarbons (p-xylene and dodecane) by O_2 in the presence of Co(II), Mn(II), Cr(III) or Fe(III) salts as catalysts [272]. The satbility constants and ΔH values of Co(II) complexes with alkylpyridines, pyridinecarboxaldehydes, and pyridinecarboxylic acids were determined. Reactivities in alkylpyridine + Co(II)⁺Br⁻ oxidation systems could be explained on the basis of the conversion of active Co(II)-alkylpyridine complexes into inactive complexes of Co(II) with the O-containing products [273].

b) Oxidation of Alkanes

n-Pentadecane oxidation was carried out with stearates of Cr(III), Fe(III), V(II), Mo(II), Co(II) and Mn(II) or their mixtures as catalysts. The effect of catalyst nature on product composition was studied [274]. 15 Three-component stearate catalysts (A1, Ce, Co, Cr, Cu, Pb, Mn, Ni, K, Na) for the oxidation of pentadecane were examined. The most selective ones for formation of acids were Mn-Ni-K and Mn-Ce-K [275]. The effect of several transition metal ions on the liquid-phase air oxidation of n-pentane at $165^{\circ}C$ and 50 bar was investigated. Fe and Ni ions increased the yield of AcOH, Cr ions increased the yields of AcOH and EtCOOH and Nb ions increased the yield of HCOOH [276].

The liquid phase oxidation of pentadecane gave ketones with 70% selectivity at 120° C in the presence of $Cr(st)_3 + Ni(st)_2$ as catalyst [277]. Mn(OAc)₂ (30-35% aqueous solution) increased the yield and selectivity for HCOOH and decreased those for Me₂CO during the oxidation of a pentane fraction and of hexane with O₂ without affecting the AcOH and EtCOOH yields significantly [278]. Catalysts containing CpMn(CO)₃, ($\eta^5-c_5H_4$ COOH)Mn(CO)₃, Mn₂(CO)₁₀ or Mn(st)₂, Ni(st)₂, and either Na(st) or K(st) oxidized alkanes to carboxylic acids, those containing 1:0.5:1.3 = Mn:Ni:K being the most active. Neutral, O-containing byproducts are also formed which slow down the reaction owing to complexation with the catalyst [279]. Liquid-phase oxidation of isobutane was examined with Mn, Cr and Fe acetates as catalysts and without any catalyst. Mn acetate increased the selectivity for acetone but a lower conversion

532

of isobutane was obtained in this case [280].

Fe and Mn phthalocyanine complexes on polystyrene were prepared and characterized by ESR, transmittance electron microscopy, scanning electron microprobe analysis, and DSC. The catalytic activity in oxidation of cyclohexane was somewhat higher than that of nonsupported phthalocyanines [281]. Oxygenation reactions of adamantanes with Fe²⁺+ O_2 in aqueous phosphate buffer solution were investigated. The oxy-functionalization of adamantane-1-acetic acid and adamantane-l-carboxylic acid is guantitative [282]. Selective oxidation of cyclohexane by 0, to cyclohexanol and cyclohexanone was studied. The catalytic activity of Fe(TPP)Cl, Co(TPP), Mn(TPP)Cl and Cu(TPP) in presence of ascorbic acid was compared with that of natural hemin, which was the most active [283]. Hemin catalyzes the selective oxidation of cyclohexane to cyclohexanol and cyclohexanone in the presence of ascorbic acid. Of the metalloporphyrins studied Fe(TPP) showed catalytic activity comparable to that of hemin [284].

The effect of cobalt naphthenate on hydroperoxide accumulation in cyclododecane and phenylcyclohexane oxidation was investigated [285]. Addition of Conaphthenate in the oxidation of cyclohexane lowered the yield of adipic anhydride and increased the yield of adipic acid [286]. A mechanism for the oxidation of cyclohexane in HOAc with O_2 catalyzed by $CO(OAC)_2.4H_2O$ at $80-95^{O}C$ to give adipic acid was proposed. This involves the formation of a cation radical species through the interaction of CO^{3+} and cyclohexane as the rate-determining step [287].

c) Oxidation of Olefins

Of the 12 acetylacetonate chelates examined $Co(acac)_2$, $Mn(acac)_2$ and $Mn(acac)_3$ were the most active catalysts for the oxidation of Me oleate and linoleate [288]. The catalytic activity of $[Co_30(OAc)_6(HOAc)_3]$, $[Mn_30(OAc)_6(HOAc)_3]OAc$ and $[Ru_30(OAc)_6(H_2O)_3]$ OAc in the liquid-phase oxidation of 1-acetoxyhexene decreased in the order stated. However, the Ru complex was the most effective in the addition of peroxy radicals to the C=C bond [289].

The kinetics of 1-decene oxidation were studied with metal acetylacetonate catalysts and azoisobutyronitrile (AIBN) as initiator. In the absence of AIBN no induction period was observed with $Co(acac)_2$, $Cr(acac)_2$, $Ni(acac)_2$ or $Cu(acac)_2$. Induction periods occured with alkali- and alkaliearth metal complexes [290]. The

Co(II) complex of (82) catalyzes the oxidation of terminal olefins to ketones and sec-alcohols. The reaction is not a free radical initiated autoxidation. Synergistic enhancement of the reaction rate with the addition of $Rh(PPh_3)_3Cl$ has been observed [291].

The hydride $HIrCl_2(COD)(DMA)$ (DMA = dimethylacetamide) catalyzes the co-oxidation of cyclooctene and H₂ to cyclooctanone and H₂O:

 $C_{8}H_{14} + O_{2} + H_{2} - C_{8}H_{14}O + H_{2}O$

No oxygenation of cyclooctene occurs in the absence of H_2 and the reaction is not a free-radical autoxidation. An Ir(III) hydroperoxide is a likely intermediate [292].

PdCl₂ catalyzed the isomerization of 1-heptene to <u>cis</u>- and <u>trans</u>-2- and 3-heptene during oxidation to 2-heptanone and gave significant yields of 3- and 4-heptanone as impurities. Conditions for obtaining highest selectivities for each isomer heptanone were determined [293]. Using the PdCl₂ + CuCl₂ catalyst system internal olefins with an allylic alkoxy or acetoxy group were regioselectively oxidized with O₂ to form the corresponding β -alkoxy or β -acetoxy ketones:

Similarly, γ -acetoxy ketones were obtained from homoallyl acetates having an internal double bond [294]:

 γ -Keto esters and 1,4-diketones were prepared by the regioselective oxidation of α , β -unsaturated esters and ketones with O_2 using the PdCl₂ + CuCl₂ catalyst system in aqueous dioxane [295]:

The oxidation of deuterated allyl alcohol $CH_2=CHCD_2OH$ by $PdCl_2$ was studied. The product composition suggests that it is the hydroxypalladation of the olefin which is the slow step of the Wacker-oxidation [296]. In the Pd-complex catalyzed oxidation of C_2H_4 in HOAc, the decomposition of the intermediate [XX'Pd(Nu)- CH_2CH_2OAc]⁻ (X, X' = Cl, AcO; Nu = O_2 , ONO, Cl, AcO) determines the reaction products. Increasing the positive charge on Pd a hydride shift becomes more favorable and AcOCH=CH₂ or MeCH(OAc)₂ is formed. With the electron density on Pd increasing the reaction with a H_2O molecule to form HOCH₂CH₂OAc becomes more likely [297]. Oxidation of butadiene in alcohol solutions of Pd(II) and Cu(II) halides gave ROCH₂CH(OR)CH=CH₂ and ROCH₂CH=CHCH₂OR (R = alky1)[298]. Irradiation of a -olefins in anhydrous solvents in the presence of Pd(OOCCF₃)₂ under O_2 leads to isomerized alkene, methyl ketones and a, β -un-saturated carbonyl compounds [299]:

d) Epoxidation of Olefins

The main products of the liquid phase epoxidation of cyclohexene by O_2 or 2-cyclohexen-l-yl hydroperoxide catalyzed by $VO(acac)_2$ were 2-cyclohexen-l-ol and the epoxides (83). The formation of (83b) proceeds mainly by intramolecular rearrangement of 2-cyclohexen-l-yl hydroperoxide [300, 301a].

The epoxidation of olefinic alcohol acetates like geranyl acetate (84) by O_2 is catalyzed by $[Fe_3O(OOCCMe_3)_6(MeOH)_3]Cl$ at $60^{O}C$. Oxygen is required in twice the ideal stoichiometry because one O atom is used for epoxidation and the other O atom is consumed

in oxidative degradation of the substrate [302].

The $\operatorname{Ru}(\operatorname{byp})_3^{2+}$ sensitized photooxidation of cis-stilbenes like (85) by O₂ in MeCN gave epoxides, the usual [2+4], and the novel [2+6] cycloadducts (see e.g. (86), (87) and (88), respectively) [302a].

Vinylcyclohexane and some derivatives are oxidized to methylketones, norbornene and its derivatives are epoxidized by O_2 in presence of PdCl(NO₂)(NCMe)₂ [303]:

Reaction of $Pd(MeCN)_2Cl(NO_2)$ with norbornene leads to the quantitative formation of metallacycle (89) which slowly decomposes to exo-epoxynorbornene (90):

In the presence of air this epoxidation becomes catalytic. Other cyclic olefins react similarly [304].

536

e) Oxidation of Aromatic Hydrocarbons

 $H_6 PW_9 V_3 O_{40}$, $H_7 SeW_9 V_3 O_{40}$ and $H_7 SiMo(VI)_9 Mo(V)_3 O_{40}$ catalyzed the liquid-phase oxidation of 1,2,3,4-tetrahydronaphthalene to form hydroperoxide, alcohol, and ketone [305]. Polymeric Schiff-base complexes of V(II) and Mn(II) (91) take up O_2 reversibly and catalyze the oxidation of cumene to 2-phenyl-2-propanol and acetophenone [306].

The oxidation of aromatic compounds by O_2 in the presence of the Fe(II)+EDTA+ascorbic acid system is improved by metallic iron powder, which serves to eliminate oxalic acid. This byproduct displaces EDTA and inhibits the selective hydroxylation [307].

Fixed Co catalysts were prepared by treatment of silica and lithiated silica with $CoCl_2$ or $Co(acac)_2$. The activity, selectivity and stability of the lithiated fixed catalysts in tetralin oxidation exceeded those of $CoCl_2$ -impregnated silica [308]. Kinetic studies of p-xylene oxidation with a $Co^{2+} + Mn^{2+} + Br^-$ catalyst suggests that the active catalytic species is a complex containing Co^{2+} , Mn^{2+} , Br^- , p-xylene, and reaction intermediates [309]. The oxidation of a mixture of p-xylene and p-toluic acid to terephtalic acid by air and catalyzed by Co or Mn salts has been performed in water as solvent at $180-190^{\circ}C$ with high yields [310]. ROC_6H_4CHO [R = alkyl, cycloalkyl, (un)substituted Ph] were prepared by liquid--phase oxidation of ROC_6H_4Me with O_2 in HOAc in the presence of $Co(OAc)_2$ and NaBr [311].

The kinetics of anthracene oxidation to anthraquinone by O_2 in presence of $Cu_2(OAC)_4$ and LiCl in AcOH was determined [312]. The initial rates in the oxidation of anthracene with O_2 at $90^{\circ}C$ by use of Cu(II) chloro complexes in a mixture of acetic acid and H_2O were studied. The rates of consumption of anthracene and O_2 are approximately equal and can be described by the following rate law [313]:

$$\frac{-d[A]}{dt} = [A][Cu_2(OAC)_4]^{0.5-0}[NaCl]^{1-0} \quad (A = anthracene \text{ or } 0_2)$$

ESR and IR studies show that during the oxidation of cumene with a Cu(II) + AN 251 anion exchange resin catalyst the structure of the catalyst is significantly changed: the Me group of the 2-Me--vinylpyridine moiety is oxidized to give an α -picolinic acid fragment thus altering the coordination sphere of Cu(II) [314]. Cu(II) and Mg compounds display synergism in catalyzing the oxidation of PhEt [315].

<u>Catalytic Oxidation of O-containing Functional Groups</u> with O₂

a) Oxidation of Alcohols

The Zr^{4+} complex of the flavin (92) oxidizes alcohols to carbonyl compounds at 30°C. In the presence of O₂ it acts as an oxidation catalyst for the same reaction, H₂O₂ is formed as byproduct [316]. Solutions of PW₁₂O₄₀³⁻ catalyze the photooxidation of isopropyl alcohol to acetone by O₂ [317].

92

Primary alcohols were oxidized by O_2 to carboxylic acids in aqueous-alkaline solutions containing a Cu-phen complex. The reactivity of alcohols increased in the following order: MeOH < EtOH < PrOH < Me₂CHCH₂OH < BuOH [318]. Cyclohexanol is oxidized by the same catalyst at 60-100^oC and 2-4 bar O_2 [319]. The catalytic activity of Cu phthalocyanine increased during vapor-phase oxidation of MeOH owing to thermolysis of the complex in O_2 [320].

b) Oxidation of Phenols

Oxygenation of (93) to the corresponding muconic anhydride (94) and 2-pyrone (95) is efficiently catalyzed by vanadium (III or IV) complexes like VO(acac)₂ or VCl(salen) at 20^oC. The quinone (96) can not be oxidized under these conditions [321]:

538

Oxidation of the catechol (93) with O_2 and $Ru(PPh_3)_3Cl_2$ as catalyst also yields (94) and (95). In this case, however, (96) and (97) were shown to be the intermediates [322]:

The monomeric (98) and the polymer-attached (99, \bigcirc = chloromethylated polystyrene resin) Schiff-base complexes of Co(II) were found to be about equally active in catalyzing the oxidation of 2,6-di-t-butylphenol by 0₂ to the corresponding quinone [323].

The oxidation kinetics of hydroquinone by O_2 were studied in aqueous solutions containing Fe²⁺ at 30-50°C. The reaction is second order in hydroquinone and zero order in Fe²⁺. The rate-limiting step is the electron transfer from Fe²⁺ to O_2 [324]. The oxidation of 3,5-di-t-butylcatechol (93) to (96) and (100) by O_2 is catalyzed by FeCl₂ in presence of N bases. The yield of the O_2 -inserted product (100) is highest when py and phen together are used as N ligands [325].

The FeCl₃-catalyzed oxidation of (93) to 3,5-di-t-butylquinone (96) by O_2 in THF was significantly promoted by addition of SiO₂, $\gamma - Al_2O_3$ and active carbon in situ [326]. Photo-oxidation of aryl ethers by air in the presence of $FeCl_3$ in aqueous MeCN afforded alcohols, aldehydes (or ketones), and N-alkylacetamides [327].

Kinetic data indicate that the oxidation of 3,5-di-tBu-catechol (93) to the corresponding quinone (96) in the presence of Cu^{2+} proceeds via a 1:1 complex of Cu^{2+} and the catechol [328]. The complex (phen)(3-n-nonylcatecholato)Cu reacts with O_2 to give 2-n-nonylmuconic acid and several secondary oxidation products [329]. The complex obtained from CuCl in py/MeOH and O_2 oxidatively cleaves 4-Me-catechol to Me-muconic acid Me-ester. The kinetics of the reaction suggests a complex of type (101) as the intermediate:

A Cu complex bound to a poly(styrene-co-4-vinylpyridine) was also found to be effective [330]. The oxidation of hydroquinone to quinone by O_2 was investigated in the presence of CuCl, CuSO₄, Cu(OAc)₂, FeCl₃ and different heterogeneous catalysts. Among the transition metal salts examined, CuCl was the most effective [331]. Crosslinked chelating resins with hydrazide or polyethylenepolyamine side chains were prepared and the catalytic activity of resin--metal chelates for the oxidation of 2,6-dihydroxyphenylacetic acid and hydroquinone by air investigated. Macroreticular resin -- Cu(II) chelates were found to be suitable catalysts and could be used repeatedly [332].

The oxidation of cuprous phenoxides like (102) by 0₂ leads to o-benzoquinones (96) and catechols (93) (the latter being present partly in the form of their Cu(II)-chelates) [333]:

Cyclic Cu(II) catecholates (103) are formed also by the oxidation of phenols and stoichiometric amounts of metallic copper with O_2 in the presence of CuCl as catalyst [334]:

ArCu and Ar_2CuLi complexes are oxidized by O_2 at O^OC mainly to the corresponding phenols (and not biphenyls) if the Ar group contains alkoxy groups in the ortho position [335].

c) Oxidation of Aldehydes and Ketones

The oxidation of propionaldehyde with O_2 in the presence of Co tetra(p-tolyl)porphyrin as catalyst has been investigated in different solvents. The induction period increases in the following order: $CH_3COOEt < Me_2CO < CH_2Cl_2 < THF < CH_3COOH < DMF < DMSO [336].$ Dimeric $Cu(II) \mu$ -hydroxo complexes $[LCu(OH)]_2^{2+}$ catalyze the following selective oxidations with O_2 : aldehyde to acid (L = bpy); degradation of carbonyl compounds to lower homologues (L = phen); dimerization of phenol (L = phen); alcohol to carbonyl compound (L = phen, in the presence of Na_2CO_3) [337]. The autoxidation of PhCHO does not take place in the complete absence of metal cations and is catalyzed by transition metal ions even when these are present only in trace concentrations. All the literature data on the noncatalyzed reaction are regarded as erratic [338].

The oxidation of dihexyl ketone by 0_2 in the presence of Mn + K stearate catalyst proceeds by initial oxidation of the α -position. The K stearate increases the rate to about twice of that obtained with Mn stearate alone; the initial enolization of the ketone depends on the K stearate [339]. Mn(st)₂ and Mn(OOCCF₃)₂ did not appreciably alter the rate of free radical formation in the oxidation of 8-pentadecanone. The acceleration of oxidation by Mn²⁺ apparently involved the chain propagation step [340]. Cyclohexanones

can be dehydrogenated in the presence of O_2 and catalytic amounts of $Pd(OOCCF_3)_2$ at room temperature. No additives are necessary. Phenol was formed at high conversions [341].

d) Oxidation of Carboxylic Acids and Derivatives

The oxidation of o-toluic acid was studied using Co(II) and Br as catalyst in Ac_2O and HOAc. In Ac_2O phthalic anhydride could be prepared in one step; a large amount of 3-acetoxyphthalide was also formed. In HOAc phthalic acid was the main product, and phthalic anhydride and phthalide were detected as intermediates [342]. A kinetic study indicated that the oxalic acid monoanion was the reactive species in the oxidation of oxalic acid in the presence of Co phthalocyanine [343]. The oxidation kinetics of ascorbic acid by O_2 catalyzed by Co(II) tetrasulfophthalocyanine (TSP) was examined in a stopped-flow reactor. Ascorbic acid- O_2 -Co(II)(TSP) and O_2 -Co(II)(TSP) are intermediates of the reaction [344]. Addition of glutamic acid significantly reduced the catalytic effect of Cu²⁺ in the oxidation of ascorbic acid, especially in acidic medium [345].

The oxidation of AcOR (R = different alkyls) with a $Co(OAc)_2$ catalyst involves initial oxidation of Co^{2+} to Co^{3+} , latter being the active species. HCOOH inhibits the oxidation by reducing Co^{3+} to Co^{2+} [346]. In the oxidation of Me₂CHCOOMe with a Cu(OAc)₂ catalyst the copper salt initiates free-radical generation but does not participate in chain propagation or termination [347].

Catalytic Oxidation of N-containing Organic Compounds with O₂

The oxidation of Fe(II) oxymesoporphyrin-2-methylimidazole by O_2 leads to Fe-mesobiliverdin with the concomitant release of CO from the meso-position of the porphyrin skeleton [348]. The hydrazine (104) reacts with Fe(TPP)Cl in the presence of O_2 to form complex (105), from this product the tetrazene (106) is liberated by addition of py [349]:

The complexes $\operatorname{Ru}(\operatorname{PPh}_3)_2(\operatorname{RNH}_2)\operatorname{Cl}_2(\operatorname{R} = \operatorname{PhCH}_2, \operatorname{n-C}_5\operatorname{H}_{11})$ act as catalysts for the oxidation of the corresponding amines to nitriles by O₂. $\operatorname{Ru}(\operatorname{PPh}_3)_3\operatorname{Cl}_2$ reacts with a large excess of benzylamine in the presence of O₂ to give $[\operatorname{Ru}(\operatorname{PhCH}_2\operatorname{NH}_2)_5(\operatorname{PhCN})]\operatorname{Cl}_2$ which, however, is inactive as an oxidation catalyst [350].

Kinetic data for the $CoBr_2$ -catalyzed oxidation of dialkylpyridines by O_2 to pyridine-carboxylic acids suggested an inhibiting effect resulting from complexation of Co(II) with the reaction products [351].

The cobaloxime(II) derivatives $Co(Hdmg)_2(PPh_3)_2$ and $[Co(Hdmg)_2Py]_2$ catalyzed the oxidation of o-phenylenediamine and ketones by O_2 to 2,2-disubstituted 2H-benzimidazoles (107):

Aldehydes react similarly [352]:

In acetone as solvent with Co^{2+} as catalyst the exclusive product is (107, R = R' = Me). In MeOH and THF (108) is formed with 100% selectivity [353]:

The initial rate of adrenochrome formation in the [tetrakis(4-sulfophenyl)porphinato]Co-catalyzed oxidation of adrenaline was directly proportional to the catalyst concentration but was independent of substrate concentration [354]. Co(salen) and its 3,3'--dimethoxy derivative catalyze the oxidation of dihydrazones $H_2NN=CRCR=NNH_2$ (R,R' = Ph, p-tolyl, p-anisyl, p-Me_2NC_6H_4, p-ClC_6H_4) to acetylenes (RC=CR') under mild conditions [355].

Five-coordinate Co(II)-Schiff base complexes like (109) mediate the oxygenation of p-nitrophenylhydrazones leading to the quantitative formation of 1-(p-nitrophenylazo)-1-peroxy Co(III) complexes of type (110)[356].

References p. 568

Co(salpr) (111) has been found to promote oxygenation of 2,6--di-tert-butylphenols bearing an electron-withdrawing group in the 4-position. 4-Acyl derivatives (112a) and their oxime O-methyl ethers (112b) gave the corresponding 6-hydroperoxy-2,4-cyclohexadienones (113). The Schiff-bases (114), on the other hand, gave unexpected products (115-7) [357]:

112

 $a_1 X = 0$; $b_1 X = NOMe$

113

n-Butyl and n-octyl isocyanide are oxidized by O_2 to the corresponding isocyanates and nitrosobenzene to nitrobenzene in the presence of catalytic amounts of cobaloxime(II) complexes [358].

The oxygenation of enamines with O_2 and $CuCl_2$ as catalyst leads to double bond cleavage products:

ESR studies show that Cu(II) acts as a one-electron oxidizing agent toward enamines. Kinetic data suggest a mechanism which involves a ternary complex of Cu, enamine and O₂ [359]. Diphenylamine was oxidized to tetraphenylhydrazine by O₂ in the presence of CuCl in pyridine [360]:

 $2 \text{ Ph}_2\text{NH} + 1/2 \text{ O}_2 \longrightarrow \text{Ph}_2\text{N-NPh}_2 + \text{H}_2\text{O}$

Depending on the N-substituents, the oxidation of o-phenylenediamines by the system O_2 + CuCl + amine yields muconitriles, phenazines, diazo compounds or polymers [361]. 9,10-Phenanthrenequinones (118) and their monoimines (119) are oxygenated by O_2 and CuCl in py to give 2,2'-biphenyldicarboxylic acids (120) and 2-cyano-2'--biphenylcarboxylic acids (121)[362]:

Treatment of (122) with an excess of $Cu(Clo_4)_2.6H_2O$ in refluxing MeOH in the presence of air afforded $[CuL(H_2O)](Clo_4)_2.H_2O$ (L = 123) by oxidative dehydrogenation [363]:

123

<u>Catalytic Oxidation of P, S or Halogen-containing Organic</u> <u>Compounds with O₂</u>

Air oxidation of PPh₃ catalyzed by Mo(VI)-cysteine complexes as MoO₂(cysOMe)₂ is enhanced by the addition of hemin or riboflavin. A catalytic cycle is proposed in which these molecules act as electron-transfer mediators for the reoxidation of Mo(V) to Mo(VI) [364]. Rh₆(CO)₁₆ catalyzes the oxidation of PPh₃, PMePh₂, or AsPh₃ with O₂ to Ph₃PO, MePh₂PO, or Ph₃AsO. In presence of CO, Rh₆(CO)₁₆ is reformed. Rh₄(CO)₈(PPh₃)₄ and Rh₂(CO)₆(PPh₃)₂ are likely intermediates. Rh₆(CO)₁₆ and Re₂(CO)₁₀ catalyze the autoxidation of ketones and cyclic alcohols to dicarboxylic acids. Experimental data suggest that lower nuclearity Rh carbonyls are active intermediates [365].

The Co(II) chelate of 4,4',4'',4'''-tetrasulphophthalocyanine adsorbed by Sephadex DEAE anion exchange resin is reduced by thiols to the Co(I) form and can be regenerated by air. Accordingly the Co(II)-anion exchange resin system is an efficient catalyst for the autoxidation of thiols [366]. The Na salt of 2-mercaptobenzimidazole is oxidized by O_2 to the corresponding disulfide or sulfonic acid in the presence of Co tetrasulphthalocyanine or Co disulfotetraaminophthalocyanine, respectively, as catalyst [367]. Oxidizing disulphide (124) by O_2 in the presence of CuCl₂ the Cu(II)--sulfinato complex (125) is obtained. The O atoms of the sulfinate moiety originate from O_2 and from the water solvent [368]:

The oxidation of 2-(acetoxymethyl)thiophene with a $Co(OAc)_2$ + NaBr catalyst in AcOH gave > 90% 2-thiophenecarboxylic acid [369]. The toluene derivative (126) was oxidized with a $Co(OAc)_2$ + NaBr catalyst to give (127) in 93-97% yield [370]:

5. <u>Catalytic Oxidation of Organic Compounds with Organic or</u> <u>Inorganic Oxidants</u>

a) Oxidation of Hydrocarbons

Kinetics of the oxidation of octane to a mixture of ketones by tBuOOH + $(Me_3CO)_3VO$ was studied. According to spectral data $(tBuO)_2V(O)OOBu^{t}$ was the active agent. This complex could be isolated [371]. Ru(IV)chloride complexes catalyze the oxidation of propane and isobutane by strong oxidizing agents such as Cr(VI), $[IrCl_6]^{2^-}$, $[SeO_4]^{2^-}$, Cl_2 and $[S_2O_8]^{2^-}$ [372]. The oxidation of propane by CrO_3 in aqueous solution of Ru(IV)chloride complexes was investigated. $[Ru(H_2O)(OH)_2Cl_3]^-$ was a more active oxidation catalyst than $[Ru(OH)_2Cl_4]^{2^-}$ present at higher Cl⁻ concentrations [373]. The isolation, purification, characterization and X-ray crystallographic structural analysis of $[Mn(TPP)N_3]_2O$ from the catalytic hydrocarbon hydroxylation system Mn(TPP)X + iodosobenzene $(X = Cl^-, Br^-, I^- and N_3)$ has been reported [374].

Methods were developed for measuring the rate constants for the reaction of OH radicals with $C_1 - C_8$ alkanes in $H_2 O_2 + Fe^{2+}$ + Fe³⁺ aqueous solutions [375]. A silica-gel adsorbed Fe³⁺-catechol complex prepared from $Fe_2(SO_4)_3$, catechol and silica gel catalyzes the hydroxylation of benzene by H_2O_2 [376]. The oxidation of some monocyclic aromatic compounds by H_2O_2 in the presence of Fe(acac)₃ has been investigated using the aromatic compound also as solvent. The results suggest that - like in aqueous solution - the attacking species is the hydroxyl radical [377]. The products of the reaction of hemes with 0, are peroxy complexes of high-spin Fe(III)-porphyrins. In aprotic solvents these compounds do not oxidize hydrocarbons but can oxidize cyclohexene in presence of Ac₂O [378]. The hydroxylation of cyclohexene and n-heptane with cumylhydroperoxide or iodosobenzene, catalyzed by various metallophorphyrins (Fe, Mn, Co, Rh, Cr) has been compared. The PhIO-dependent hydroxylation is strongly influenced by the nature of the metal and its environment. This is consistent with a metal-oxo-intermediate (porphyrin)M=O. On the contrary, the cumylhydroperoxide-dependent hydroxylation is almost independent of the metal which suggests the cumyloxi radical as the active species [379].

Internal acetylenes RC=CR' [R = R' = Ph; R = Ph, R' = C_5H_4 , Me; R = Me, R' = Et] are oxidized by iodosobenzene and $Ru(PPh_3)_3Cl_2$ in CH_2Cl_2 to give the corresponding α -diketones RCOCOR' in good yields. Similarly, terminal acetylenes $RC \equiv CH [R = Ph, C_{6}H_{13}, C_{5}H_{11}]$ give the corresponding carboxylic acids RCOOH [380]. Oxidation of alkynyl ethers (128) and amines (129) with iodosobenzene in presence of $Ru(PPh_{3})_{3}Cl$ affords α -keto esters and α -keto amides in good yields [381]:

Treatment of cyclic olefins with tBuOOH in AcOH and $[Rh_3O(OAc)_6(H_2O)_3]OAc$ as catalyst affords the corresponding α,β --unsaturated carbonyl compounds. Allylic acetates are byproducts [382]:

Application of the same reagent to styrene derivatives resulted in C=C bond fission to give benzaldehyde or acetophenone [382a]:

$$\begin{array}{ccc} H(Me) & H(Me) \\ | & ---- & | \\ PhC=CHR & PhC=O & (R = H, Me, Ph, CHO) \end{array}$$

The oxidation of cyclic olefins, β -pinene and allylbenzene in acetic acid to the corresponding allylic acetates by tBuOOH is catalyzed by PdCl₂, AgOAc and TeO₂. Linear α -olefins **yield** methyl ketones as main products [383]. Relative rate constants were determined for the oxidation of linear alkanes, isoalkanes and cycloal-kanes by aqueous $(NH_4)_2S_2O_8$ and $(NH_4)_2S_2O_8 + Ag^+$ systems. The D isotope effect indicated that homolysis of a C-H bond was involved [384].

b) Epoxidation of Olefins

Perturbation theory was used to examine the decomposition of hydroperoxides and the epoxidation of olefins by hydroperoxides in the presence of metal ions with different electronic structures [385].

Evidence concerning the nature of peroxometal intermediates in the oxidation of organic substrates by H_2O_2 or tBuOOH in the presence of vanadium(V) compounds as catalysts indicates that H_2O_2 forms a side-bonded peroxometal species (130) whereas tBuOOH forms a V- μ -perester (131)[386]:

130

131

High diastereoselectivities were achieved in the v^{5+} -catalyzed tBuOOH epoxidations of acyclic allylic alcohols substituted by the Me₃Si group in the C-2 or C-3 positions [387]. For example:

Optimum conditions were established for the epoxidation of α -pinene, geraniol, geraniol acetate, limonene, and methoxycitronellene by tBuOOH in the presence of metal complex catalysts. E.g. oxidation of α -pinene in the presence of V(acac)₃ gave 44% of the <u>cis</u>-oxide, whereas in the presence of Mo(CO)₆ campholenic aldehyde was obtained [388]. p-Vinylbenzoylacetone was homopolimerized and copolymerized with acrylamide or maleic anhydride to produce polymers which would chelate substantial amounts of transition metal ions such as Cu²⁺, Ni²⁺, Co²⁺, Eu³⁺, and VO²⁺. The VO²⁺ chelate was an effective heterogeneous phase catalyst for the epoxidation of allyl alcohols such as geraniol with tBuOOH [389].

The diastereoselectivity of epoxidation with tBuOOH in presence of $\text{Ti}(\text{OPr}^{i})_{4}$ has been studied with olefins of type (132) [R = H, Me; R^{1} = H, tBuMe₂SiO(CH₂)₄, AcOCH₂CH(OMe)C(OMe)₂CH₂, PhCH₂CH₂; X = = tBuMe₂Si, Ph₂MeSi; MeO(CH₂)₂OCH₂, PhCH₂] [390]:

The enantioselective Sharpless-epoxidation with tBuOOH, Ti(OPr^{1})₄ and diethyl tartarate (DET) was used to convert (133) into (134) or (135), depending on the DET enantiomer used [391]:

The same system was applied in the presence of (-)-diethyl tartarate for the transformation of (136-8)[392]:

Epoxidation of racemic (139) by tBuOOH in the presence of $Ti(OPr^{i})_{4}$ and (-)-diethyl tartarate affords (140) and (141)[393]:

Using the same system [but with (+)-diethyl tartarate] for the epoxidation of (142) afforded (143) in 54% yield [394]:

Propylene oxide or propane-1,2-diol accelerate the epoxidation of propylene by $MoO(O_2)_2(HMPA)(H_2O)$. Two new epoxidating reagents (144) and (145) are formed and are more active than the parent complex [395]:

144

145

The stoichiometric epoxidation of cyclohexene by MoO_4L_2 (L = 8-quinolinol) and $MoO(O_2)_2[OP(NMe_2)_3]$ (A) was nearly 2 orders of magnitude slower than the catalytic epoxidation by tBuOOH in the presence of (A) or MoO_2L_2 [396].

 MoO_2L_2 [HL = PhCH(OH)CH_2OH] was prepared and its catalytic activity in epoxidation of propylene by tBuOOH or PhMeCHOOH was studied [397]. Asymmetric epoxidation of (Z)-2-methyl-7-octadecane to disparlure (146) or its enantiomer was carried out in the presence of MoO_5L , where L = (-)-MeOOCCHRCH₂COOMe (R = piperidino, morpholino) or (-)-Et₂NCH₂CHMeCOOMe [398]:

Based on kinetic experiments a mechanism for the Mo(VI) catalyzed epoxidation of allyl chloride by tBuOOH was proposed [399]. The effects of the initial concentration of 1-nonene, PhMeCHOOH, and Mo complex catalyst on the epoxidation of 1-nonene with ethylbenzene hydroperoxide were determined [400]. Cp_2MoX_2 complexes (X = Cl, Br) catalyze the epoxidation of diolefins by tBuOOH in nearly quantitative yield [401]. $MoO_2Cl_2L_2$ (L_2 = neutral bidentate or 2 neutral monodentate ligands), $Mo(NO)_2Cl_2L_2$, $Mo(CO)_4L_2$, and polymer-supported Mo complexes catalyze cyclohexene epoxidation. The activity of the catalysts depends on the neutral ligand in the order: $Ph_2P(O)CH_2CH_2P(O)Ph_2 > bpy > phen$. The polymer-supported catalysts were less active than the homogeneous catalysts [402]. Nearly quantitative conversion of (147) into the epoxides (148) and (149) was observed with tBuOOH in presence of $Mo(CO)_6$ in benzene ($80^{O}C$). The ratio of (148):(149) was 5:1 [403]:

146

Molybdenum blue adsorbed on charcoal catalyzes the epoxidation of olefins by H_2O_2 . The addition of alkyltin compounds (e.g. Me₂SnCl) increases the yield of epoxide [404].

The catalytic activity of Mn(TPP)OAc in the epoxidation of olefins with NaOCl is enhanced by small amounts of pyridine. Pyridine is probably coordinated to the manganese-porphyrin during the reaction [405].

In dry solvents such as THF or $CHCl_3$ oxidation of olefins by $Co(py)(TPP)NO_2$ in the presence of $Tl(OOCPh)_3$ results in moderate yield of epoxides. The source of 0 is the nitro ligand of the Co complex. Reduction of the Tl(III) cocatalyst is a competing side reaction which deactivates the system [406].

Olefins have been epoxidized with Fe(TPP)Cl and iodosobenzene. The epoxidations are stereospecifically syn. The system hydroxylates anisole and naphthalene, but not benzene [407]. Epoxidation of olefins is possible also with p-cyano-N,N-dimethylaniline N-oxide in the presence of Fe(TPP)Cl as catalyst. As a side reaction some oxidative demethylation of the oxidant (yielding formaldehyde) takes place [408].

c) Oxidation of O-containing Functional Groups

The molybdenum peroxide-catalyzed oxidation of alcohols by DMSO has been applied to 1,2-diols. Monooxidation, dioxidation with C,C-bond cleavage and the formation of 2-methylthiomethoxy-1-ols were observed [409]:

2,2', 2'', 2'''-Tetrapyridineiron(III) complex ions anchored to poly(L-glutamate) or poly(D-glutamate) were used as catalysts for the H_2O_2 oxidation of L(+)-ascorbic acid at pH 7 with varying complex:polymer-residue molar ratios. Stereospecific effects were observed on increasing the complex to polymer ratio [410]. The reaction mechanism is complex and comprises a catalytic $[H_2O_2]$ -independent pathway and an uncatalyzed electron-transfer process between ascorbate anion and H_2O_2 [411].

Ru complexes catalyze the oxidative dehydrogenation of glycerol to glyceraldehyde (and minor amounts of dihydroxiacetone) by N-methylmorpholine oxide. Using $Ru(PPh_3)_2(aminoacid)Cl$ complexes a low enantioselectivity was observed [412]. The kinetics of the Ru(III) catalyzed oxidation of aliphatic diols and cyclic alcohols by phenyliodoso acetate in aqueous AcOH + HClO₄ is zero order in oxidant and first order in substrate and Ru(III). A mechanism involving H⁻ abstraction from the alcohol by Ru(III) in the rate--determining step has been proposed [413]. Kinetics of the $RuCl_3^-$ catalyzed oxidation of several ketones to carboxylic acids by NaIO_4 in aqueous alkaline medium has been reported. The mechanism involves complex formation between RuCl_3 species and the ketone [414]. Kinetics for the RuCl_3 catalyzed oxidation of triethylene glycol and tetraethylene glycol by $\operatorname{Ce}(\operatorname{SO}_4)_2$ in aqueous sulfuric acid medium is zero order with respect to $\operatorname{Ce}(\operatorname{SO}_4)_2$ and first order with respect to substrate and RuCl_3 . An inner-sphere mechanism involving H-transfer between protonated organic substrate and RuCl_3 has been suggested [415].

The Ru(VI)-catalyzed oxidation of 2-Me-propan-1-ol, 3-Me-butan-1-ol, 4-Me-pentan-2-ol, and butan-2-ol by $Fe(CN)_6^{3-}$ was zero order in $Fe(CN)_6^{3-}$ and first order in Ru(VI); the rate increased with substrate concentration and showed Michaelis-Menten behavior. The rate-limiting step is the decomposition of an alcohol-RuO₄ complex dianion formed in a steady-state preequilibrium from HRuO₄³⁻ and the corresponding hydroxy carbocation [416]. The kinetics of the RuCl₃-catalyzed oxidation of di- and triethylene glycol by $Fe(CN)_6^{3^2}$ was studied. A mechanism involving the H-transfer from the α -C atom of glycol by the Ru(III) complex was suggested [417]. The oxidation kinetics of $n-C_5H_{11}OH$, Et_2CHOH [418] and benzyl alcohol [419] by $[Fe(CN)_6]^{3^-}$ were examined in the presence of Ru complexes.

Trace amounts of Cu^{2+} ions effectively catalyze the oxidation of L-ascorbic acid by $S_2 O_8^{2-}$, presumably by the following mechanism [420]:

 $[H_2A \longrightarrow HA^- + H^+] + Cu^{2+} \longrightarrow Cu^+ + radicals$ $s_2o_8^{2-} + Cu^+ \longrightarrow Cu^{2+} + \cdot so_4^- + so_4^{2-}$

The oxidation of phenylphosphate and hydroquinone phosphate with the Cu²⁺ + H_2O_2 system was studied under aerobic and anaerobic conditions [421]. A kinetic study of the Ag(I)-catalyzed oxidation of hexane-1,6-diol by $S_2O_8^{2-}$ was performed [422].

d) Oxidation of N-containing Compounds

The oxidation of 3,3'-diaminobenzidine (DAB) by H_2O_2 catalyzed by Cu^{2+} , Co^{2+} , Fe^{3+} , and Mn^{2+} was investigated. Optimal pH for the reactions in the presence of different metal ions varied from 6 to 9. A rapid spontaneous DAB oxidation by H_2O_2 in the absence of any

transition metal was observed at pH 5 [423]. The kinetics of the Os(VIII)-catalyzed oxidation of several amino acids by alkaline hexacyanoferrate(III) has been studied. The active oxidizing species is $OsO_4(H_2O)(OH^-)$ [424]. Oxidation of the aminotriazinones (150 a,b) with tBuOOH catalyzed by M(salen) [M = Co(II), Mn(II)] resulted in deamination giving rise to (151 a,b). In the absence of catalyst, (150) is quite stable against tBuOOH. This provides a chemical model for the metabolism of such herbicides [425].

1,10-Phenanthroline derivatives are oxidized selectively to 2,2'.bipyridine-3,3'-dicarboxylic acids by H_2O_2 in the presence of Co^{2+} or Cu^{2+} . The mechanism involves reversible attachment of the superoxide ion O_2 . to the C-5:C-6 bond of the starting aromatic compound. The system shows chemiluminescence [426].

e) Oxidation of S-containing Compounds

The kinetics of Ph_2S oxidation by H_2O_2 in the presence of catalytic amounts of $NaVO_3$ has been determined. The mechanism involves formation of a complex between H_2O_2 and VO_3 and the reaction of this with 2 molecules of Ph_2S [427]. The rates of oxidation of different dialkyl and aryl alkyl sulfides to sulfoxides by H_2O_2 or tBuOOH in the presence of catalytic amounts of $VO(acac)_2$ and $MOO_2(acac)_2$ have been measured. Data are best explained by a mechanism according to which the substrate does not coordinate to the metal (external O-transfer mechanism) [428]. The same mechanism applies if $TiO(acac)_2$ is the catalyst, but in this case non-bulky sulfides coordinate to the metal and inhibit their oxidation [429]. The oxidation of aryl methyl sulphides with tBuOOH in the presence of $TiO(acac)_2$ or $Ti(OPr^i)_4$ affords the corresponding sulphoxides in quantitative yield. The kinetic behaviour of the reaction suggests that the sulphides coordinate to Ti(IV) [430].

In the oxidation of aryl methyl sulphides with H_2O_2 in the presence of $MoO_2(acac)_2$ in EtOH the substituent effect follows

a Hammett relationship and supports an electrophilic mechanism [431]. M(TPP)Cl complexes (M = Fe, Mn) catalyze the oxidation of sulfides to sulfoxides by iodosobenzene [432]. Fe(TPP)Cl catalyzes the oxidation of organic sulfides by H_2O_2 to sulfoxides. Imidazole accelerates the reaction extremely but is not absolutely essential. Sulfenium radicals are suggested as intermediates [433].

6. <u>Stoichiometric Oxidation with High Valent Transition</u> <u>Metal Complexes</u>

a) Oxidation of Hydrocarbons

Adamantane, 1-methyladamantane and bicyclo [3.3.1]nonane are oxidized at 25° C by chromic anhydride in 45% H_2 SO₄ at approximately the same rate, but cyclohexane and methylcyclohexane are oxidized significantly more slowly [434]. Carbon-carbon multiple bonds are oxidatively cleaved by the Cr(V) reagent (bpy) H_2 CrOCl₅. For example trans-stilbene is converted into benzaldehyde with 96% yield [435]. Oxidation of 1,8-cineole (152, R = R' = H) with chromyl acetate gave (R, R' = O) as the major product [436].

Oxidation of 5,6-dihydroxyalkenes of type (153) derived from neryl and geranyl acetates with Cr(VI) oxo species like Collins reagent (CrO₃.py₂) afford <u>cis</u>-THF diols with 99.5% stereospecifity [437]:

152

The homogeneous oxidation of hydrocarbons by MnO_4^- in aqueous solutions is first order in substrate and in Mn(VII). Alkane reactivity increases in the order: $C_2-C_6^-$ n-alkanes < isobutane < cyclohexane < isopentane < methylcyclohexane. The order of C-H bond reactivity is primary < secondary < tertiary [438]. Oxidation of l-adamantylcarboxylic acid with KMnO₄ at 20^oC gave mainly the 3-hydroxy derivative. At 80^oC the 3-oxo, 3,5-dihydroxy, and 3-hyd-

556
roxy-5-oxo derivatives were also produced [439]. Oxidation of o-ROC₆H₄Me (R = PhSO₂, p-MeC₆H₄SO₂, Me) with KMnO₄ in aqueous MgSO₄ at 90-100^oC gave the corresponding benzoic acids o-ROC₆H₄COOH in 75-80% yield [440]. Olefins RCH=CH₂ (R = C₆₋₂₀ alkyl, Ph) were converted to RCOOH by treatment with KMnO₄ in H₂SO₄ + AcOH + CH₂Cl₂ at room temperature [441]. The oxidation of oleic acid and the cleavage of the carbon-carbon bond was achieved using KMnO₄ in water emulsion. The oxidation is controlled by parameters effecting emulsion stability [442]. The oxidation of methyl(E)-cinnamate with quaternary ammonium permanganates is inversely proportional to the size of the cation, i.e. smaller cations promote a faster reaction [443]. [n] Ferrocenophanes are oxidized by Ba(MnO₄)₂ to give α -oxo compounds only when n > 3; the yield of oxidation products increases when n = 4,5. In doubly-bridged [n][3]-ferrocenophanes the longer bridge is oxidized more easily [444].

Activation energy and entropy were determined for the oxidation of crotonic acid by alkaline hexacyanoferrate(III) and a mechanism was proposed [445]. The kinetics of oxidation of $p-RC_6H_4COO^-$ (R = Me, Et, iPr) by Ru(trpy)(bpy)0²⁺ to the corresponding a-alcohols in water has been studied. The added O atom comes from the solvent and the oxo group transfer from Ru to the substrate does not occur [446]. ¹H NMR investigation of the reaction of OsO₄ with 1,1'-diphenylethylene has shown direct evidence for the formation of two asymmetric intermediate species which may be assigned as containing four membered rings with an Os, C bond (154 and 155)[447]:

Cu(III) oxidizes aromatic and alicyclic compounds in AcOH + - CF₃COOH, yielding acetates and dehydro dimers [448].

b) Oxidation of O-containing Functional Groups

Rate constants of oxidation of substituted benzyl alcohols with vanadium(V) were determined under pseudo first-order conditions in $HClO_4$ -containing solutions. The rate constants and activation parameters did not change significantly with changing the substituents. The main oxidizing species was the $V(OH)_3^{2+}$ cation [449]. The oxidation kinetics of 4-chromanol (156) and 4-chromanone (157) were determined using V_2O_5 in H_2SO_4 .(156) was oxidized first to (157) and then to chromone (158) [450].

The oxidation of alcohols, including carbohydrates by pyridinium chlorochromate (Corey's reagent) or pyridinum dichromate is catalyzed by the addition of molecular sieves. It is postulated that specific sites on the sieves favor hydride-ion transfer [451]. The oxidation of (159) with pyridinum chlorochromate gave (160) or a mixture of (160) + (161) depending on the nature of R [452].

HOCHRCH2CH=CH2	RCOCH2CH=CH2	trans-RCOCH=CHMe	
(R = H, Ph, Me)	(R = H, Ph, Me)	(R = Me)	
159	160	161	

Chromic acid or pyridinium chlorochromate oxidize 9-borabicyclo [3.3.1]nonane to cyclooctanone and <u>cis</u>-1,5-cyclooctanediol to 9-oxabicyclo [3.3.1]nonan-1-ol. Under more drastic conditions pyridinium chlorochromate transforms the latter and <u>cis</u>-1,5-cyclooctanediol to 1,5-cyclooctadiene [453]. 4-Hydroxycyclohexanone was prepared by oxidation of 1,4-cyclohexanediol with poly(4-vinylpyridinium chlorochromate) in H_2O at $80^{O}C$ with 77% yield [454]. 4-(Dimethylamino)pyridinium chlorochromate (162) is a mild selective reagent for the oxidation of complex allylic and benzylic alcohols to the corresponding carbonyl compounds [455].

Pyruvic acid is formed as the major reaction product in the chromic acid oxidation of lactic acid. This points to a two-electron oxidation involving C-H cleavage [456]. Lauryl alcohol is oxidized to $n-C_{11}H_{23}$ CHO in 90% yield by CrO₃ on Amberlyst A-26 [457]. Poly[vinyl(pyridinium dichromate)] was prepared from polyvinylpyridine and CrO₃ and used to oxidize alcohols to the carbonyl compounds at 70°C. With reactive alcohols (PhCH₂OH, PhMeCHOH, PhCH₂CHCH₂OH) conversions >99% could be obtained at a 1.1:1 molar ratio of Cr(VI) to alcohol. With aliphatic and alicyclic alcohols a 1.7:1 molar ratio was required. The polymer could be regenerated, treated with CrO₃ and reused [458]. Oxidation kinetics of (1-hydroxymethyl)-ferrocene to acetyl-ferrocene with (Ph₃SiO)₂CrO₂ were examined in benzene at 20-45°C [459].

 $H_4SiMo_{12}O_{40}$ oxidizes a number of O-containing aliphatic compounds. Primary alcohols gave mixtures of ethers and acetals [460]. Colloidal Pt catalyzes the photodehydrogenation of alcohols to aldehydes or ketones by $SiW_{12}O_{20}^{4-}$ [461].

The oxidation of D(+)glucose by $KMnO_4$ in aqueous H_3PO_4 solution obeys first order kinetics in both the substrate and the oxidant [462]. The acid-catalyzed reduction of $KMnO_4$ by L-ascorbic acid was studied in H_2SO_4 . The rate law shows first order dependence in ascorbic acid and fractional dependence in Mn(VII) [463]. The permanganate ion oxidation of 2,2-dimethylpropanal and other aliphatic aldehydes shows general-acid catalysis, is first order in aldehyde and first order in MnO_4 . The following mechanism has been suggested (HA = acid) [464]:

$$RCHO + H_2O^{\dagger} = [RCH=OH] - RCH-OH] + H_2O$$

$$MnO_{4}^{-}$$

$$RCOOH + MnO_{3}^{-} + HA = Slow$$

$$RCHOH + MnO_{3}^{-} + HA = RCHOH$$

Excellent yields of ketones from secondary alcohols and carboxylic acids from primary alcohols are obtained when the alcohol, dissolved in CH_2Cl_2 is added to hydrated copper permanganate and allowed to react for a few minutes [465]. The substituted hydroquinone part of rifamycin B is effectively oxidized to the corresponding quinone structure by MnO₂ [466].

Quantitative conversion of alcohols into carbonyl compounds can be effected at 50° C using ferric nitrate impregnated on a K 10 bentonite clay:

$$3$$
 CHOH + 2 H⁺ + 2 NO₃ ---- 3 C=0 + 2 NO + 4 H₂O

Nitrous esters are intermediates of this reaction [467].

Sterically hindered phenols with Sn, Tl or B-containing groups like (163) and (164) were oxidized by $K_3Fe(CN)_6$ to give 3,3;5,5'-tetra-t-butyl diphenoquinone [468]:

Kinetic and mechanistic studies have been carried out on the oxidation of iPrOH to Me_2CO by $Ru(trpy)(bpy)O^{2+}$, $Ru(bpy)_2(py)O^{2+}$, $Ru(bpy)_2(py)O^{2+}$, $Ru(trpy)(bpy)OH^{2+}$, and $Ru(bpy)_2(py)OH^{2+}$. The results can be interpreted in terms of two-electron oxidation pathways for the Ru(IV) oxo complexes and one-electron pathways for the Ru(III) hydroxy complexes [469].

The oxidative cleavage of 1,2-diols by $Co(OAc)_3$ in AcOH is first order in both Co(III) and substrate [470]. Kinetic studies of the oxidation of L-ascorbic acid by $[Co(C_2O_4)_3]^{3-}$ and $[Fe(phen)]^{3+}$ in aqueous solution support a mechanism of two successive one-electron transfer reactions through an outer-sphere activated complex [471].

Oxidation of $PhCH_2OH$ to acetophenone with $[Ni(bpy)_3]^{3+}$ is first order in both Ni(III) and the alcohol. The second-order rate constant is independent of acidity [472]. Two moles of complex are used for one mole of product. The oxidation is an outer-sphere reaction not requiring the removal of bpy ligands from Ni³⁺ [473]. The kinetics of the oxidation of hydroquinone and catechol by Ni(III)(1,4,8,11-tetraazacyclotetradecane)⁺ has been studied in detail. Sulfate ions retard the reaction owing to the formation of sulfate complexes with lower redox potentials [474].

The oxidation of L-ascorbic acid and D-isoascorbic acid by the Cu(II) complexes of several polypeptides was investigated. Using enantiomeric polypeptide-Cu(II)complexes stereoselective inhibition was observed, the extent of which depended on pH [475]. The oxidation of $H_2NCH_2CH_2OH$, $HOCH_2CH_2OH$, and several other diols by Ag(II) was studied at pH $\approx 8,5$. Oxidation takes place through intramolecular electron transfer from the substrate to Ag(II) within a complex [476]. Ionol (165) in the form of its conjugated base (166) is oxidized by Ag⁺ in MeOH to (167) or in THF to (168) and (169) [477]:

The potentiomeric study of oxidation of formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde by ammoniacal silver nitrate indicates that Ag^+ and not a Ag^+-NH_3 complex is the reactive species. The mechanism involves the attack by Ag^+ ion on RCH(OH)₂ (R = H, Me, Et, Pr) to give Ag, H⁺, and 'C(OH)₂R in the first and rate determining step [478].

c) Oxidation of N-containing Compounds

Oxidation of the aminoalcohol (165) with CrO_3/py in CH_2Cl_2 (Collins oxidation) generates the amino aldehyde (166) with complete (>99.5%) retention of chiral integrity [479]:

BocNHCHCH₂OH 165 165 166 166166

Benzyloxycarbonyl threonin (167) and serin (169) methyl esters, when subjected to oxidation with CrO_3 -pyridine in CH_2Cl_2 or CrO_3 -AcOH, respectively, gave rise to the same N-protected methyl oxamate (169) [480]:

Aqueous KMnO_4 oxidizes nitro paraffin salts to aldehydes and if the reaction is performed in the presence of a water immiscible solvent like pentane the consecutive oxidation of the aldehyde can be avoided. Yields above 80% can be achieved and even olefinic nitro salts may be converted to unsaturated aldehydes [481]. 1,4-Nitroketones are transformed into 1,4-diketones by treatment with a stoichiometric amount of KMnO_4 -silica gel in benzene at 70°C in about 70% yield [482]. Permanganate oxidation of (170) gives (172) probably via the unstable carboxylate (171) [483]:

Bispyridinesilver permanganate $Ag(py)_2^+$.MnO₄⁻ is a relatively stable compound and soluble in organic solvents like benzene. It is an efficient oxidizing agent for the conversion of alcohols into aldehydes or ketones and aromatic amines into azo compounds [484]. The oxidation of aconitine (173) with KMnO₄ has been reinvestigated. The product oxonitine (174) contains an N-formyl group which has been shown now to originate from the solvents acetone and MeOH as well as the acetaldehyde generated by oxidation of the N-ethyl group of aconitine [485].

The oxidation of dihydropyridine (175) by $Fe(CN)_6^{3-}$ was studied in weakly basic, neutral, and weakly acidic solutions under an inert atmosphere and in the presence of O_2 . A mechanism was proposed in which a cation-ferricyanide ion-pair reacts with the

substrate to form an ion-radical pair in the rate determining step [486]. The dehydrogenation of hydrazonitriles to azonitriles in an organic solvent by an aqueous solution of K_3 [Fe(CN)₆] is catalyzed by carbon black:

R-NH-NH-R R-N=N-R

(R = e.g. $Me_2(NC)C$ -, $Me(PhCH_2)(NC)C$ -). Yields are 99-100%. Phenolic OH groups on the surface of carbon black intermediate this redox reaction [487]. In the oxidation of 3-substituted 1-Me--pyridinium salts (176) with $K_3Fe(CN)_6$, iPr and tBu groups at the 3-position were found to orient oxidation to the 2- and the 6-position. (177) and (178) were formed in ratios of 71:29 and 14:86, respectively [488].

Silver acetate oxidizes (179) in acetic acid solution at reflux temperature to (180) and (181) [489]:

d) Oxidation of P, S, Halogen or Si-containing Compounds

The thermal decomposition of the $Rh-O_2$ complex (182) yields 4-cyclooctenone and cyclooctanone. In the presence of excess PPh_3 quantitative formation of Ph_3PO is observed [490]:

References p. 568

The oxidation of the 1,2,3,4-thiatriazole-5-thiolate ion by MnO_4^- in alkaline medium was investigated. Two different stoichiometries were observed [491].

The kinetic study of the oxidation of phenol and chlorophenols by alkaline permanganate and by manganate(VI) showed fractional and varying orders with respect to the substrates, thus suggesting free radical chain mechanisms [492]. Oxidation of halotoluenes at 50° C with Fe(CN)³⁻₆ in aqueous AcOH containing HClO₄ gave the corresponding aldehyde as the major product. The reaction was first order in substrate, oxidant and acid. A kinetic isotope effect of $k_{\rm H}/k_{\rm D}^{=}$ 6 was observed. The reaction proceeds via a benzylic radical intermediate [493].

Chromyl chloride reacts regiospecifically with O-silylated enolates to form α -hydroxy ketones. This reaction provides a useful method for the α -hydroxylation of ketones [494].

V. Reviews

Hydrocarbon reactions on metal centres. 102 refs. [495]

A discussion of the different kinds of solute-solute and solute--solvent interactions acting in homogeneous catalysis by transition metal complexes. 47 refs. [496]

Recent applications of homogeneous catalysis to organic synthesis. 140 refs. [497]

Metal clusters and cluster catalysis. 125 refs. [498]

Reactivity of catalysts derived from organometallics directly deposited on supports. 22 refs. [499]

Immobilized transition-metal carbonyls and related catalysts. 308 refs. [500]

Catalysis by graphite intercalation compounds. 135 refs. [501]

Liquid-phase conversion of carbon monoxide in the presence of transition metal coordination compounds (water gas shift reaction). 56 refs. [502]

Synthesis gas for the homogeneous catalyzed synthesis of oxygen--containing C_2 compounds (hydrogenation, carbonylation, homolo-gation).86 refs. [503]

Advances in homologation. 76 refs. [504]

High-pressure photochemistry and ultraviolet spectroscopy in gas--liquid systems. 97 refs. [505] Formation of carbon-hydrogen bonds by reductive elimination. 36 refs. [506] Activating hydrogen with Ir compounds (homogeneous dehydrogenation of alkanes). 34 refs. [507] Advances in enantioselective hydrogenation on chiral complexes of Rh, Pd, and Co. 91 refs. [508] Asymmetric hydrogenation of cyclic dipeptides containing α, β dehydroamino acid residues and subsequent preparation of optically pure a -amino acids. 5 refs. [509] Asymmetric synthesis catalyzed by transition-metal complexes with functionalized chiral ferrocenylphosphine ligands. 32 refs. [510] Chiral ferrocenylphosphines and β -(N,N-dimethylamino)alkylphosphines: highly efficient ligands for some homogeneous catalytic asymmetric syntheses. 21 refs. [511] Some asymmetric syntheses catalyzed by chiral phosphine-transition metal complexes. 40 refs. [512] Asymmetric synthesis mediated by transition metal complexes. 82 refs. [513] Induction of asymmetry by aminoacids. 208 refs. [514] Stereochemically opened clusters of heavy d-elements in redox catalysis. 52 refs. [515] Activation and transfer of molecular oxygen catalyzed by transition metal complexes. 153 refs. [516] Transition metal-catalyzed stereocontrolled epoxidations. 23 refs. [517] Recent advances in metal-complex-catalyzed epoxidations of olefins with organic hydroperoxides - mechanistic approach. 20 refs. [518] Phase transfer-assisted permanganate oxidations. 97 refs. [519] Copper catalyzed oxidation and oxygenation 258 refs. [520] Oxygen-transfer from inorganic and organic peroxides to organic substrates: a common mechanism? 145 refs. [521] List of Abbreviations bpv == 2,2'-bipyridine COD = 1,5-cyclooctadiene η^{5} -cyclopentadienyl Cр = Cy ----cyclohexyl CysH ----cysteine diphos = Ph,PCH,CH,PPh, DMA dimethyl acetamide -

dmgH	=	dimethylglyoxime
DMSO	=	dimethyl sulfoxide
dpm	=	Ph ₂ PCH ₂ PPh ₂
EDTA	-	ethylene diamine tetraacetic acid
HMPA	=	hexamethylphosphoric triamide
NBD	=	norbornadiene
nmen	=	neomenthyl
o.y.	=	optical yield
phen	=	1,10-phenanthroline
ру	=	pyridine
salen	=	N, N'-bis salicylidene-ethylenediamino
SIL	=	silica
st	=	stearate, n-C ₁₇ H ₃₅ COO
TPP	=	5,10,15,20-tetraphenylporphinato
trpy	=	2,2',2''-terpyridine
ttp	=	Php(CH2CH2CH2PPh2)2
Z	=	benzyloxycarbonyl, PhCH ₂ OCO-

Metal Index

The numbers give those references which deal with the use of the metal as reagent or catalyst.

Ti 43, 241, 242, 246, 390-394, 429, 430

- Zr 233, 316
- V 93, 274, 300, 301, 305, 306, 321, 371, 386-389, 427, 428, 449, 450
- Та 235
- Cr 5, 36, 71, 72, 107, 175, 176, 270-272, 274-277, 280, 290, 372, 373, 379, 434-437, 451-459, 479, 480, 494
- Mo 5, 10, 36, 71-73, 133, 229, 247, 260, 269, 274, 305, 364, 388, 395-404, 409, 428, 431, 460
- W 10, 36, 71, 72, 133, 305, 317, 461

Mn 37, 54, 63, 64, 85, 88, 238, 272, 274-276, 278-281, 283, 288, 289, 306, 309, 310, 339, 340, 374, 379, 405, 423, 425, 432, 438-444, 462-466, 481, 483-485, 491, 492

Re 60, 209, 210

- Fe 2, 22, 53, 61, 65, 74, 75, 84, 85, 95, 96, 99, 186, 195, 199, 208, 230, 243, 261, 262, 268, 269, 272, 274, 276, 280-284, 302, 307, 324-327, 331, 348, 349, 375-379, 407, 408, 410, 411, 416-418, 423, 424, 432, 433, 445, 467, 468, 471, 486-488, 493
- Ru 6-8, 38, 52, 54, 57-59, 61b, 75-78, 85, 87, 97-99, 177, 187, 203, 218, 221, 223, 224, 227, 231, 250, 256, 263, 265-267, 289, 302a, 322, 350, 372, 373, 380, 381, 412-417, 419, 446, 469
- Os 61b, 78, 99, 100, 178, 202, 424, 447
- Co 10-13, 15, 16, 18-22, 37, 39-43, 48, 49, 55-57, 59, 66, 85, 89, 101, 102, 164, 166, 169, 174, 181-183, 197, 199, 236-239, 248, 272-275, 283, 285-291, 308-311, 323, 336, 342-344, 346, 351-358, 366, 367, 369, 370, 379, 389, 406, 423, 425, 426, 470, 471
- Rh 9, 10, 13-15, 23-31, 43, 44, 46, 47, 50, 51, 54, 62, 67, 68-70,
 79, 80, 82, 83, 86, 90, 94, 102-104, 105-116, 119, 136-148,
 150-158, 159-163, 165, 167-169, 184, 185, 188, 189, 191-195,
 199-201, 204, 205, 211a-217, 219, 220, 222, 226, 228, 229, 249,
 250, 256-259, 291, 365, 379, 382, 382a, 490
- Ir 79, 91, 117-120, 169, 170, 211, 216, 225, 240, 250, 292, 372
- Ni 102, 171, 206, 244, 251, 275-277, 279, 290, 389, 472-474
- Pd 3, 42, 86, 121-130, 172, 198, 199, 232, 252-255, 293-299, 303, 304, 341, 383
- Pt 32-35, 81, 92, 131, 132, 173, 174, 190, 199, 207, 359-363, 368, 426
- Cu 4, 135, 179, 264, 275, 283, 290, 298, 312-315, 318-320, 328-335, 337, 345, 347, 389, 420, 421, 423, 448, 465, 475
- Ag 383, 384, 422, 476-478, 484, 489

U 180, 245

Transition metals (general) 1, 61a, 134, 338, 385

References

1	K.M.Nicholas, Organometallics 1 (1982) 1713
2	V.Bellagamba, R.Ercoli and A.Gamba, J.Organometal.Chem. 235 (1982) 201
3	J.P.Daudey, G.Jeung, M.E.Ruiz and O.Novaro, Mol.Phys. 46 (1982) 67; CA 97 (1982) 116059
4	I.V.Repyakh, V.M.Vorontsev and G.I.Golodets, Teor.Eksp.Khim. 18 (1982) 219; CA 97 (1982) 55054
5	A.K.Rappé and W.A.Goddard, J.Am.Chem.Soc. 104 (1982) 3287
6	A.Kiennemann, G.Jenner, E.Bagherzadah and A.Deluzarche, Ind. Eng.Chem., Prod.Res.Dev. 21 (1982) 418
7	L.Kaplan, Organometallics 1 (1982) 1102
8	J.F.Knifton, J.Catal. 76 (1982) 101
9	D.G.Parker, R.Pearce and D.W.Prest, J.C.S.Chem.Commun. (1982) 1193
10	R.J.Daroda and G.Wilkinson, Cienc.Nat. (St.Maria,Braz.) 2 (1980) 33; CA 96 (1982) 51738
11	W.Zhai, Huaxue Tongbao (1981) 582; CA 96 (1982) 103424c
12	T.K.Banerjee, C.R.Saha and D.Sen, J.Chem.Technol. Biotechnol. 31 (1981) 373
13	V.Macho, M.Polievka and E.Jurecekova, Ropa Uhlie 23 (1981) 385; CA 96 (1982) 200312
14	W.Cornely and B.Fell, Chem.Ztg. 105 (1981) 317; CA 96 (1982) 51551
15	T.Fuchikami and I.Ojima, J.Am.Chem.Soc. 104 (1982) 3527
16	V.Macho, E.Jurecekova and M.Polievka, Ropa Uhlie 23 (1981) 329; CA 96 (1982) 51597
17	G.Kohl, M.Kinne, L.Schroeder, H.Fischer, N.S.Imyanitov, B.E.Kuvaev and M.P.Vysotski, Chem.Tech. (Leipzig) 33 (1981) 629
18	W.Cornely and B.Fell, J.Mol.Catal. 16 (1982) 89
19	B.E.Hanson, P.E.Fanwick and J.S.Mancini, Inorg.Chem. 21 (1982) 3811
20	C.U.Pittman, R.H.Ryan, D.W.Wilson, G.Wilemon and M.Absi- Halabi, Prepr.Am.Chem.Soc.Div.Pet.Chem. 25 (1980) 714
21	BH.Chang, Inorg.Chim.Acta 65 (1982) L189
22	Yu.B.Kagan, G.A.Korneeva, N.A.Kubasova, M.V.Shishkina, L.I.Zvezdkina and A.N.Bashkirov, Neftekhimiya 21 (1981) 879

23 R.B.King, K.Tanaka, J.Indian Chem.Soc. 59 (1982) 124; CA 97 (1982) 92525 24 C.Claver, E.Marco, L.A.Oro, M.Royo and E.Pastor, Transition Met.Chem. 7 (1982) 246 25 M.Royo, F.Melo, A.Manrique and L.Oro, Transition Met. Chem. 7 (1982) 44 26 S.Arai, T.Saito, H.Matsunaga, M.Sumida, and Y.Tsutsumi Toyo Soda Kenkyu Hokoku 25 (1981) 71; CA 96 (1982) 51741 27 M.Royo, A.Manrique, E.Pastor, L.A.Oro and J.V.Heras, An. Quim.Ser. A 77 (1981) 110; CA 97 (1982) 38277 28 R.Uson, L.A.Oro, M.T.Pinillos, M.Royo and E.Pastor, J.Mol. Catal. 14 (1982) 375 29 M.Matsumoto and M.Tamura, J.Mol.Catal. 16 (1982) 195 30 J.Matsumoto and M.Tamura, J.Mol.Catal. 16 (1982) 209 31 J.D.Unruh and J.R.Christenson, J.Mol.Catal. 14 (1982) 19 32 P.Haelg, G.Consiglio and P.Pino, Helv.Chim.Acta 64 (1981) 1865 33 R.Bardi, A.M.Piazzesi, G.Cavinato, P.Cavoli and L.Toniolo J.Organometal.Chem. 224 (1982) 407 34 R.Bardi, A.M.Piazzesi, A.Del Pra, G.Cavinato and L.Toniolo J.Organometal.Chem. 234 (1982) 107 34a S.C. Tang and L. Kim, J. Mol. Catal. 14 (1982) 231 35 C.U.Pittman, Y.Kawabata, L.I.Flowers, J.C.S.Chem.Commun., (1982) 473 36 G.K.I.Magomedov, and L.V.Morozova, Zh.Obsch.Khim. 51 (1981) 2266 37 T.E.Nalesnik, J.H.Freudenberger and M.Orchin, J.Organometal. Chem. 236 (1982) 95 38 G.Süss-Fink and J.Reiner, J.Mol.Catal. 16 (1982) 231 39 S.I.Woo, and C.G.Hill, J.Mol.Catal. 15 (1982) 309 40 V.A.Semikolenov, B.L.Moroz, V.A.Likholobov and Yu.I. Yermakov. React.Kinet.Catal.Lett. 18 (1981) 341 H.Fu, Y.Luo, Z.Yang, Y.Wang, N.Wu and A.Zhang, Youji 41 Hoaxue 6 (1981) 421; CA 96 (1982) 85009 B.L.Moroz, V.A.Semikolenov, V.A.Likholobov and Yu.I. 42 Yermakov, J.C.S.Chem.Commun. (1982) 1286 43 L.Vendet and J.K.Stille, Organometallics 1 (1982) 380 44 H.Hirai, Sh.Komatsuzaki and N.Toshima, Nippon Kagaku Kaishi (1982) 316; CA 96 (1982) 199018 F.R.Hartley, S.G.Murray and P.N.Nicholson, J.Mol.Catal. 45 16 (1982) 363

46	A.Luchetti and D.M.Hercules, J.Mol.Catal. 16 (1982) 95
47	F.Jiao, W.Xie, Z.Ma, Y.Yin and Z.Yang, Ranliao Huaxue
	Xuebao 9 (1981) 47; CA 96 (1982) 52483
48	Z.Tian, Q.Wang and Q.Zhang, Cuihua Xuebao 2 (1981) 83; CA
	96 (1982) 103559
49	N.S.Imyanitov, Neftekhimiya 21 (1981) 872
50	T.Okano, T.Kobayashi, H.Konishi and J.Kiji, Tetrahedron
	Lett. 23 (1982) 4967
51	T.Mise, P.Hong and H.Yamazaki, Chem.Lett. (1982) 401
52	P.Isnard, B.Denise, R.P.A.Sneeden, J.M.Cognion and
	P.Durual, J.Organometal.Chem. 240 (1982) 169
53	M.J.Chen, H.M.Feder and J.W.Rathke, J.Am.Chem.Soc. 104
	(1982) 7346
54	M.J.Chen, H.M.Feder and J.W.Rathke, J.Mol.Catal. 17 (1982)
	331
55	M.Röper, H.Loevenich and J.Korff, J.Mol.Catal. 17 (1982)
	315
56	J.Gauthier-Lafaye, R.Perron and Y.Colleuille, J.Mol.Catal.
	17 (1982) 339
57	K.Kudo and N.Sugita, Nippon Kagaku Kaishi (1982) 462;
	CA 97 (1982) 55255
5 8	G.Braca, G.Sbrana, G.Valentini and M.Cini, J.Mol.Catal. 17
	(1982) 323
59	M.Hidai, Y.Koyasu, M.Yokota, M.Orisaku and Y.Uchida, Bull.
	Chem.Soc.Jpn, 55 (1982) 3951
60	J.R.Sweet and W.A.G.Graham, J.Am.Chem.Soc. 104 (1982)
	2811
61	T.Bodnar, E.Coman, K.Menard and A.Cutler, Inorg.Chem. 21
	(1981) 1275
61a	M.A.Drezdzon, K.H.Whitmire, A.A.Bhattacharyya, WL.Hsu,
	C.C.Nagel, S.G.Shore and D.F.Shriver, J.Am.Chem.Soc. 104
	(1982) 5630
61b	J.N.Nicholls, D.H.Farrar, P.F.Jackson, B.F.G.Johnson and
	J.Lewis, J.C.S.Dalton Trans. (1982) 1395
62	B.T.Heaton, L.Strona, J.Jonas, T.Eguchi and G.A.Hoffman
	J.C.S.Dalton Trans. (1982) 1159
63	J.H.Freudenberger and M.Orchin, Organometallics 1 (1982)
	1408
64	M.J.Nappa, R.Santi, S.P.Diefenbach, and J.Halpern, J.Am.
	Chem.Soc. 104 (1982) 619

65 66	J.C.Barborak and K.Cann, Organometallics 1 (1982) 1726 F.Ungváry and L.Markó, Organometallics 1 (1982) 1120
67	R.U.Kastrup , J.S.Merola and A.A.Oswald, Adv.Chem.Ser. 196 (1982) 43
68	J.M.Brown, L.R.Canning, A.G.Kent and P.J.Sidebottom, J.C.S. Chem.Commun. (1982) 721
69	J.M.Brown and A.G.Kent, J.C.S.Chem.Commun. (1982) 723
70	A.A.Oswald, J.S.Merola, E.J.Mozeleski, R.V.Kastrup and J.C.
	Reisch, ACS Symp.Ser. 171 (Phosphorus Chem.) (1981) 503
71	D.J.Darensbourg and A.Rokicki. Organometallics 1 (1982) 1685
72	W.A.R.Slegeir, R.S.Sapienza, R.Rayford and L.Lam, Organo- metallics 1 (1982) 1728
73	S.Attali, R.Mathieu and G.J.Leigh, J.Mol.Catal. 14 (1982) 293
74	R.G.Pearson and H.Mauermann, J.Am.Chem.Soc. 104 (1982) 500
75	D.C.Gross and P.C.Ford, Inorg.Chem. 21 (1982) 1702
76	J.C.Bricker, C.C.Nagel and S.G.Shore, J.Am.Chem.Soc. 104 (1982) 1444
77	D.Choudhury and D.J.Cole-Hamilton, J.C.S.Dalton Trans. (1982) 1885
78	S.Bhaduri, H.Khwaja and K.R.Sharma, Indian J.Chem. 21A (1982) 155
79	D.Forster and T.C.Singleton, J.Mol.Catal. 17 (1982) 299
80	C.P.Kubiak, C.Woodcock and R.Eisenberg, Inorg.Chem. 21 (1982) 2119
81	A.A.Frew, R.H.Hill, L.Manojlovic-Muir, K.W.Muir and R.J. Puddephat, J.C.S.Chem.Commun. (1982) 198
82	T.Okano, T.Kobayashi, H.Konishi and J.Kiji, Bull.Chem.Soc.Jpn. 55 (1982) 2675
83	K.Kaneda, M.Yasumura, T.Imanaka and S.Teranishi, J.C.S.Chem. Commun. (1982) 935
84	T.J.Lynch, M.Banah, M.McDougall and H.D.Kaesz, J.Mol.Catal. 17 (1982) 109
85	R.H.Fish, A.D.Thormodsen and G.A.Gremer, J.Am.Chem.Soc. 104 (1982) 5234
86	Y.Watanabe, N.Suzuki, Y.Tsuji, S.C.Shim and T.Mitsudo, Bull. Chem.Soc.Jpn. 55 (1982) 1116
87	T.Okano, K.Fujiwara, H.Konishi and J.Kiji, Bull.Chem.Soc.Jpn. 55 (1982) 1975

J.Palágyi and L.Markó, J.Organometal.Chem. 236 (1982) 343 88 89 K.Murata and A.Matsuda, Bull.Chem.Soc.Jpn. 55 (1982) 2195. 90 F.Jachimowicz and J.W.Raksis, J.Org.Chem. 47 (1982) 445 91 J.K.Hoyano and W.A.G.Graham, J.Am.Chem.Soc. 104 (1982) 3723 92 E.S.Rudakov, V.P.Tret'yakov, S.A.Mitchenko and A.V.Bogdanov Dokl.Akad.Nauk SSSR 259 (1981) 899 93 A.F.Shestakov, S.Ya.Zhuk, A.T.Papoyan and E.A.Grigoryan Kinet,Katal 23 (1982) 597 W.J.S.Lockley, Tetrahedron Lett. 23 (1982) 3819 94 95 R.L.Whetten, K.J.Fu and E.R.Grant, J.Chem.Phys. 77 (1982) 3769 96 L.N.Sukhobok, G.P.Potapov, V.G.Luksha, V.N.Krutii and B.D.Polkovnikov, Izv.Akad.Nauk SSSR, Ser.Khim. (1982) 2310 97 Y.Doi, K.Koshizuka and T.Keii, Inorg.Chem. 21 (1982) 2732 Y.Doi, S.Tamura and K.Koshizuka, Inorg.Chim.Acta 65 (1982) 98 L63 99 K.J.McQuade, R.Pierantozzi, M.B.Freeman and B.C.Gates Prepr.Am.Chem.Soc., Div.Pet.Chem. 25 (1980) 751 B.Besson, A.Choplin, L.D'Ornelas and J.M.Basset, J.C.S.Chem. 100 Commun. (1982) 843 F.K.Shmidt, Yu.S.Levkovskii, N.M.Ryutwa, and T.I.Bakunina 101 Kinet.Katal. 23 (1982) 360 G.V.Tsintsadze, E.D.Getsadze, E.F.Litvin, and L.Kh.Freidlin 102 Soobshch . Akad.Nauk Gruz, SSR 104 (1981) 57; CA 96 (1982) 180693 G.Vitulli, P.Salvadori, A.Raffaelli, P.A.Costantino and 103 R.Lazzaroni, J.Organometal.Chem. 239 (1982) C23 J.E.Hamlin, K.Hirai, V.C.Gison and P.M.Maitlis, J.Mol.Catal. 104 15 (1982) 337 105 M.Carvalho, L.F.Wieserman and D.M.Hercules, Appl.Spectrosc. 36 (1982) 290 106 J.R.Peterson, D.W.Bennett and L.D.Spicer, J.Catal. 71 (1981) 223 107 H.H.Seltzman, S.D.Wyrick and C.G.Pitt, J.Labelled Compd. Radiopharm. 18 (1981) 1365 S.Cenini, R.Ugo and F.Porta, Gazz.Chim.Ital. 111 (1981) 293 108 G.M.Grishina, A.T.Teleshev, E.E.Nifant'ev, Zh.Obsch.Khim. 109 52 (1982) 1307 R.T.Smith, R.K.Ungar and M.C.Baird, Transition Met.Chem. 7 110 (1982) 288

- 110a J.Niewahner and D.W.Meek, Inorg.Chim.Acta 64 (1982) L123
- 111 J.Niewahner and D.W.Meek, Adv.Chem.Ser. 196 (1982) 237
- 112 A.Efraty and I.Feinstein, Inorg.Chem. 21 (1982) 3115
- 113 T.Uematsu and H.Hashimoto, Kogakubu Kenkyu Hokoku (Chiba Daigaku) 33 (1981) 99; CA 96 (1982) 110835
- 114 I.V.Patsevich, I.A.Ogorodnikov, A.I.Fridman, V.I.Nefedov, and Ya.V.Salyn, Vysokomol.Soedin., Ser.A 24 (1982) 1559; CA 97 (1982) 127352
- 115 Z.Chen, Y.Jiang, Fundam.Res.Organomet.Chem.Proc.China-Jpn-U.S.Trilateral Semin.Organomet.Chem.,lst (1980) 629; CA 97 (1982) 128222
- 116 M.Capka, Kinet.Katal. 23 (1982) 291
- 117 R.H.Crabtree, P.C.Demou, D.Eden, J.M.Mihelcic, C.A.Parnell, J.M.Quirk and G.E.Morris, J.Am.Chem.Soc. 104 (1982) 6994
- 118 Ch.J.Moon, Ch.Sh.Chin, Taehan Hwahakhoe Chi 26 (1982) 253; CA 97 (1982) 215504
- 119 R.Uson, L.A.Oro, M.J.Fernandez and R.Sariego, Rev.Acad. Cienc.Exactas, Fis.-Quim.Nat.Zaragoza 35 (1980) 87; CA 97 (1982) 215423
- 120 F.Morandini, B.Longato and S.Bresadola, J.Organometal.Chem. 239 (1982) 377
- 121 A.S.Berenblyum, A. Knizhnik, S.L.Mund and I.I.Moiseev, J.Organometal.Chem. 234 (1982) 219
- 122 A.S.Berenblyum, A.Knizhnik, S.L.Mund, and I.I.Moiseev, Izv. Akad.Nauk SSSR, Ser.Khim. (1982) 1249
- 123 A.S.Berenblyum, S.L.Mund, T.P.Goranskaya and I.I.Moiseev Izv.Akad.Nauk SSSR, Ser.Khim. (1981) 2472
- 124 Y.Chen, J.Liu, Y.Lin, J.Ni, Ch.Xiao, and Y.Wan, Wuhan Daxue Xuebao, Ziran Kexueban (1982) 41; CA 97 (1982) 61687
- 125 Y.Lin, J.Liu, J.Ni, Y.Chen, Ch.Xiao and Y.Wang, Cuthua Xuebao 3 (1982) 220; CA 97 (1982) 215076
- 126 D.Wang, Y.Zhou, Y.Jiang, Ch.Chen, Sh.Li and B.Kang, Gaofenzi Tongxun (1982) 78; CA 97 (1982) 163746
- 127 B.Chen, Zh.Peng and R.Chen, Fundam.Res.Organomet.Chem., Proc.China-Jpn-U.S.Trilateral Semin.Organomet.Chem. 1st (1980) 613; CA 97 (1982) 72918
- 128 V.N.Kolot, M.V.Lyubimilova, E.F.Litvin, G.I.Kudryavtsev, L.Kh.Freidlin and S.L.Davidova, Izv.Akad.Nauk SSSR, Ser. Khim. (1982) 1420

129	T.P.Voskresenkaya, V.A.Semikolenov, V.A.Likholobov,
	A.P.Shepelin, P.A.Zhdan and A.V.Mashkina, Kinet.Katal. 23
	(1982) 382
130	V.A.Semikolenov, V.A.Likholobov, and Yu.I.Ermakov, Kinet.
	Katal. 22 (1981) 1475
131	Y.Zhou, and Y.Jiang, Guihua Xuebao 2 (1981) 233; CA 96
	(1982) 4154
132	K.Kushi, Y.Matsumura, K.Hiroyoshi, K.Tarama and S.Yoshida
	Nippon Kagaku Kaishi (1982) N ^O 3, 347; CA 97 (1982) 5579
133	J.L.Graff, T.J.Sobieralski, M.S.Wrighton and G.L.Geoffroy
	J.Am.Chem.Soc. 104 (1982) 7526
134	L.J.Boucher, N.J.Holy and B.H.Davis, ACS Symp.Ser. 169
	(1981) 319
135	S.Koritala, JAOCS, J.Am.Oil Chem.Soc. 59 (1982) 309
136	J.M.Brown and D.Parker, J.Org.Chem. 47 (1982) 2722
137	J.M.Brown and P.A.Chaloner, J.C.S.Perkin Trans. II (1982)
	711
138	D.P.Riley, J.Organometal.Chem. 234 (1982) 85
139	C.Cativiela, J.Fernandez, J.A.Mayoral, E.Melendez, R.Uson,
	L.A.Oro and M.J.Fernandez, J.Mol.Catal. 16 (1982) 19
140	P.Salvadori, R.Lazzaroni, A.Raffaelli, S.Pucci, S.Bertozzi,
	D.Pini and G.Fatti, Chim.Ind. (Milan) 63 (1981) 492
1 41	W.R.Cullen and J.D.Woollins, Can.J.Chem. 60 (1982) 1793
142	T.Yoshikuni and J.C.Bailar, Inorg.Chem. 21 (1982) 2129
14.3	J.M.Brown, and B.A.Murrer, J.C.S.Perkin Trans.II (1982) 489
144	J.P.Amma, and J.K.Stille, J.Org.Chem. 47 (1982) 468
145	D.Lafont, D.Sinou and G.Descotes, J.Chem.Res., Synop. (1982)
	117
145a	H.Brunner and M.Pröbster, Inorg.Chim.Acta 61 (1982) 129
146	W.S.Knowles, W.C.Christopfel, K.E.Koenig, and C.F.Hobbs
	Adv.Chem.Ser. 196 (1982) 325
147	A.Miyashita, H.Takaya and R.Noyori, ACS Symp.Ser. 185 (1982)
	274
148	K.Toriumi, T.Ito, H.Takaya, T.Souchi and R.Noyori, Acta
	Christallogr. B38 (1982) 807
149	A.Uehara and J.C.Bailar, J.Organometal.Chem. 239 (1982) 1
150	G.Comisso, A.Sega, V.Sunjic and A.Lisini, Croat.Chem.Acta
	54 (1981) 375; CA 97 (1982) 92397
151	M.Yamashita, K.Hiramatsu, M.Yamada, N.Suzuki and S.Inokawa
	Bull.Chem.Soc.Jpn. 55 (1982) 2917

152 J.Bourson and L.Oliveros, J.Organometal.Chem. 229 (1982) 77 E.Casarotti, A.Chiesa and G.D'Alfonso, Tetrahedron Lett. 153 23 (1982) 2995 154 E.E.Nifantev and T.S.Kukhareva, Zh.Obshch.Khim. 51 (1981) 2146 I.Ojima, T.Kogure, N.Yoda, T.Suzuki, M.Yatabe and T.Tanaka 155 J.Org.Chem. 47 (1982) 1329 156 I.Ojima and M.Yatabe, Chem.Lett. (1982) 1335 I.Ojima and N.Yoda, Tetrahedron Lett. 23 (1982) 3913 157 I.Ojima, N.Yoda and M.Yatabe, Tetrahedron Lett. 23 (1982) 158 3917 159 J.-C.Poulin and H.B.Kagan, J.C.S.Chem.Commun. (1982) 1261 160 V.K.Latov, A.I.Vinogradova, M.B.Saporovskaja and V.M.Belikov Izv.Akad.Nauk SSSR, Ser.Khim (1982) 683 161 J.M.Brown and R.G.Naik, J.C.S.Chem.Commun. (1982) 348 162 J.M.Brown and D.Parker, Organometallics 1 (1982) 950 T.-P.Dang, P.Aviron-Violet, Y.Colleuille and J.Varagnat 163 J.Mol.Catal. 16 (1982) 5 164 L.O.Nindakova, F.K.Shmidt, E.L.Klabunovskii, V.N.Sheveleva and U.A.Pavlov, Izv.Akad.Nauk.SSSR, Ser.Khim (1981) 2621 165 A.Uehara and J.C.Bailar, J.Organometal.Chem. 239 (1982) 11 166 H.Kanai, N.Yamamoto, K.Kishi, K.Mizuno and K.Tarama, J.Catal. 73 (1982) 228 167 P.M.Lausarot, G.A.Vaglio and N.Valle, J.Organometal.Chem. 240 (1982) 441 R.R.Burch, E.L.Muetterties, R.G.Teller and J.M.Williams, 168 J.Am.Chem.Soc. 104 (1982) 4257 A.R.Sanger, Can.J.Chem. 60 (1982) 1363 169 170 D.J.A. de Wall, T.I.A.Gerber and W.J.Louw, J.C.S.Chem. Commun. (1982) 100 171 M.Sakai, F.Harada, Y.Sakakibara and N.Uchino, Bull.Chem.Soc. Jpn. 55 (1982) 343 G.V.Kudryavtsev, A.Yu.Stekheev and G.U.Lisichkin, Zh.Vses. 172 Khim. O-va. 27 (1982) 232; CA 97 (1982) 38120 173 S.Franks, F.R.Hartley and J.R.Chipperfield, Adv.Chem.Ser.196 (1982) 273 174 A.Fusi, R.Ugo, R.Psaro, P.Braunstein and J.Dehand, J.Mol. Catal, 16 (1982) 217

175	P.Le Maux and G.Simonneaux, J.Organometal.Chem. 229 (1982)
176	M.J.Mirbach, T.N.Phu and A.Saus, J.Organometal.Chem. 236 (1982) 309
177	Ch.Zhao, Y.Zhou, L.Wang and Sh.Chin, Lanzhou Daxue Xuebao,
	Ziran Kexueban 18 (1982) 121; CA 97 (1982) 164906
178	Z.Dawoodi, K.Henrick and M.J.Mays, J.C.S.Chem.Commun.
170	M Pasquali P Looni C Floriani and A Gaotani-Manfredotti
175	Inorg.Chem. 21 (1982) 4324
180	W.J.Evans, D.J.Wink and D.R.Stanley, Inorg.Chem. 21 (1982) 2565
181	V.E.Zadov, A.V.Finkelshtein and A.A.Vaisburd, Dokl.Akad. Nauk SSSR 263 (1982) 922
182	V.E.Zadov, A.V.Finkelshtein and A.A.Vaisburd, Kinet.Katal.
100	23 (1902) 030
183	V.E.Zadov, A.V.Finkeishtein, A.A.Vaisburd and O.U.Yangalov Kinet.Katal. 23 (1982) 630
184	I.Rajca, Pol.J.Chem. 55 (1981) 775; CA 97 (1982) 91423
185	T.Okano, K.Tsukiyama, H.Konishi and J.Kiji, Chem.Lett.
	(1982) 603
186	M.Yamashita, K.Miyoshi, Y.Okada and R.Suemitsu, Bull.Chem.
	Soc.Jpn. 55 (1982) 1329
187	G.Lavigne, N.Lugan and J-J.Bonnet, Organometallics 1 (1982)
	1040
188	B.R.Cho and R.M.Laine, J.Mol.Catal. 15 (1982) 383
189	K.Tani, K.Suwa, E.Tanigawa, T.Yoshida, T.Okano and S.Otsuka,
	Chem.Lett. (1982) 261
190	S.Badhuri, K.R.Sharma, J.C.S.Dalton Trans. (1982) 727
191	S.Tőrös, L.Kollár, B.Heil and L.Markó, J.Organometal.Chem.
	232 (1982) C17
192	F.Joó and E.Trócsányi, J.Organometal.Chem. 231 (1982) 63
193	K.Tani, K.Suwa, T.Yamagata and S.Otsuka, Chm.Lett. (1982)
	265
194	K.Tani, K.Suwa and S.Otsuka, ACS Symp.Ser. 185 (1982) 283
195	M.Kumada, T.Hayashi, T.Mise, A.Katsumara, N.Nagashima and
	M.Fukushima, Kenkyu Hokoku-Asahi Garasu Kogyo Gijutsu
	Shoreikai 37 (1980) 69; CA 96 (1982) 85708
196	J.Bremer, V.Dexheimer and K.Madeja, J.Prakt.Chem. 323 (1981) 857
	175 176 177 178 179 180 181 182 183 184 185 186 187 186 187 188 189 190 191 192 193 194 195

197 A.Rockenbauer, M.Györ, M.Kwiecinski and S.Tyrlik, Inorg. Chim.Acta 58 (1982) 237 198 T.K.Banerjee and D.Sen, J.Chem.Technol.Biotechnol. 31 (1981) 676 199 M.V.Klyuev, Uzv.Vyssh.Uchebn.Zaved.,Khim.Khim.Tekhnol. 25 (1982) 751; CA 77 (1982) 99077 D.J.Drury, M.J.Green, D.J.M.Ray and A.J.Stevenson, 200 J.Organometal.Chem. 236 (1982) C23 201 H.Fujitsu, E.Matsumara, S.Shirahama, K.Takeshita and I.Mochida, J.C.S.Perkin Trans.I (1982) 855 202 J.Banford, Z.Dawoodi, K.Henrick and M.M.Mays, J.C.S.Chem. Commun. (1982) 554 203 C.W.Jung and P.E.Garrov, Organometallics 1 (1982) 658 S.Shinoda, Y.Tokushige, T.Kojima and Y.Saito, J.Mol.Catal. 204 17 (1982) 81 205 H.Moriyama, T.Aoki, S.Shinoda and Y.Saito, J.C.S.Perkin Trans. II (1982) 369 206 L.F.Halle, R.Houriet, M.M.Kappes, R.H.Staley and J.L. Beauchamp, J.Am.Chem.Soc. 104 (1982) 6293 207 R.S.Paonessa and W.C.Trogler, J.Am.Chem.Soc. 104 (1982) 3529 208 H.Inoue and M.Sato, J.C.S.Chem.Commun. (1982) 1014 209 D.Baudry, M.Ephritikhine and H.Felkin, J.C.S.Chem.Commun. (1982) 606 210 D.Baudry, M.Ephritikhine, H.Felkin and J.Zakrewski, J.C.S. Chem.Commun. (1982) 1235 211 R.H.Crabtree, M.F.Mellea, J.M.Mihelcic and J.M.Quirk, J.Am. Chem.Soc. 104 (1982) 107 211a R.R.Burch, E.L.Muetterties and V.W.Day, Organometallics, 1 (1982) 188 A.Vazquez de Miguel, K.Isobe, B.F.Taylor, A.Nutton and 212 P.M.Maitlis, J.C.S.Chem.Commun. (1982) 758 213 R.Usón, L.A.Oro and M.A.Esteruelas, Transiion Met.Chem. 7 (1982) 242 214 D.Beaupere, L.Nadjo, R.Uzan and P.Bauer, J.Mol.Catal. 14 (1982) 129 D.Beaupere, P.Bauer, L.Nadjo and R.Uzan, J.Organometal. 215 Chem. 238 (1982) C12 216 J.Kaspar, R.Spigliarich and M.Graziani, J.Organometal.Chem. 231 (1982) 71

578	
217	R.Spogliarich, A.Tencich, J.Kaspar and M.Graziani, J.Organometal.Chem. 240 (1982) 453
218	S.Muthukamaru Pillai, S.Vancheesan, J.Rajaram and J.C.
•	Kuriacose, J.Mol.Catal. <u>16</u> (1982) 349
219	R.Sariego and L.A.Oro, Bol.Soc.Chil.Quim. 27 (1982) 62; CA 97 (1982) 45017
220	R.Sariego, M.Valderrama, I.Carkovic, M.Martinez, Bol.Soc. Chil.Quim. 27 (1982) 117; CA 97 (1982) 55045
221	Y.Watanabe, T.Ohta and Y.Tsuji, Bull.Chem.Soc.Jpn. 55 (1982) 2441
222	R.Grigg, T.R.B.Mitchell and S.Sutthivaiyakit, Tetrahedron 37 (1981) 4313
223	M.Bianchi, U.Matteoli, P.Frediani, G.Menchi and F.Piacenti J.Organometal.Chem. 240 (1982) 59
224	M.Bianchi, U.Matteoli, P.Frediani, G.Menchi and F.Piacenti J.Organometal.Chem. 236 (1982) 375
225	R.Spogliarich. G.Zassinovich, J.Kaspar and M.Graziani, J.Mol. Catal. <u>16</u> (1982) 359
226	Y.Ishii, K.Osakada, T.Ikariya, M.Saburi and S.Yoshikawa Chem.Lett. (1982) 1179
227	M.Bianchi, U.Matteoli, G.Menchi, P.Frediani and F.Piacenti
	J.Organometal.Chem. 240 (1982) 65
228	K.F.Liou and C.H.Cheng, J.Org.Chem. 47 (1982) 3018
229	W.J.Boyle and F.Mares, Organometallics 1 (1982) 1003
230	Y.Nambu, M.Kijima, T.Endo and M.Okawara, J.Org.Chem. 47 (1982) 3066
231	J.Blum, S.Shtelzer, P.Albin and Y.Sasson, J.Mol.Catal. 16 (1982) 167
232	R.Bar, Y.Sasson and J.Blum, J.Mol.Catal. 16 (1982) 175
233	Ch.Qian, K.Liu and H.Zhou, Huaxue Xuebao 40 (1982) 165; CA 96 (1982) 199011
234	M.R.Churchill, H.J.Wasserman, P.A.Belmonte and R.R.Schrock Organometallics 1 (1982) 559
235	J.B.N.Effa, J.Lieto and J.P.Aune, Inorg.Chim.Acta 65 (1982) L105
236	T.E.Nalesnik and M.Orchin, Organometallics 1 (1982) 222
237	J.A.Roth, P.Wiseman and L.Ruszala, J.Organometal.Chem. 240 (1982) 271
238	T.E.Nalesnik, J.H.Freudenberger and M.Orchin, J.Mol.Catal. 16 (1982) 43

239 Y.Matsui and M.Orchin, J.Organometal.Chem. 236 (1982) 381 240 O.V.Howarth, C.H.McAteer, P.Moore and G.E.Morris, J.C.S. Chem. Commun. (1982) 745 241 R.Amposta, P.Camps, M.Figuredo, C.Jaime and A.Virgili An.Quim.Ser. C 77 (1981) 267; CA 97 (1982) 162429 242 D.R.Corbin, G.D.Stucky, W.S.Willis and E.G.Sherry, J.Am. Chem.Soc. 104 (1982) 4298 243 T.Y.Luh, Synth.Commun. 11 (1981) 829 244 J.-J.Brunet, D.Besozzi, A.Courtois and P.Caubere, J.Am.Chem. Soc. 104 (1982) 7130 245 G.Folcher, J.F.Le Maréchal and H.Marquet-Ellis, J.C.S.Chem. Commun. (1982) 323 246 Y.D.Xing and N.Z.Huang, J.Org.Chem. 47 (1982) 140 247 N.Ueyama, M.Nakata and A.Nakamura, J.Mol.Catal. 14 (1982) 341 248 S.W.Heinzman and B.Ganem, J.Am.Chem.Soc. 104 (1982) 6801 249 M.Nishiki, H.Miyataka, Y.Niino, N.Mitsuo and T.Satoh, Tetrahedron Lett. 23 (1982) 193 250 S.L.Grundy and P.M.Maitlis, J.C.S.Chem.Commun., (1982) 379 251 A.M.Caporusso, G.Giacomelli and L.Lardicci, J.Org.Chem. 47 (1982) 4640 252 E.Keinan and P.A.Gleize, Tetrahedron Lett. 23 (1982) 477 253 P.Four and F.Guibe, Tetrahedron Lett. 23 (1982) 1825 E.Keinan and N.Greenspoon, Tetrahedron Lett. 23 (1982) 241 254 255 R.O.Hutchins and K.Learn, J.Org.Chem. 47 (1982) 4380 256 M.F.Semmelhack and R.N.Misra, J.Org.Chem. 47 (1982) 2469 257 I.Ojima and T.Kogure, Organometallics 1 (1982) 1390 258 T.Kogure and I.Ojima, J.Organometal.Chem. 234 (1982) 249 259 G.Göndös and J.C.Orr, J.C.S.Chem.Commun. (1982) 1238 260 X.Lu, J.Sun and X.Tao, Synthesis (1982) 185 261 D.Mansuy, M.Pontecave and J.-P.Battioni, J.C.S.Chem.Commun. (1982) 317 262 M.Nitta and T.Kobayashi, Tetrahedron Lett. 23 (1982) 3925 263 J.L.Graff and M.S.Wrighton, Inorg.Chim.Acta 63 (1982) 63 264 A.T.Poulos, G.S.Hammono and M.E.Burton, Photochem. Photobiol. 34 (1981) 169 265 E.Tsuchida, H.Nishide, N.Shimidzu, A.Yamada, H.Kaneko and Y.Kurimura, Makromol.Chem. Rapid Commun. 2 (1981) 621

266	M.Forster and R.E.Hester, Chem.Phys.Lett. 85 (1982) 287
267	Y.Kurimura and K.Katsumata, Bull.Chem.Soc.Jpn. 55 (1982) 2560
268	M.Tezuka, T.Yajima, A.Tsuchiya, Y.Matsumoto, Y.Uchida and
	M.Hidai, J.Am.Chem.Soc. 104 (1982) 6834
269	K.Tanaka, Y.Imasaka, M.Tanaka, M.Honjo and T.Tanaka , J.Am.
	Chem.Soc. 104 (1982) 4258
270	R.Wolf and E.Steckhan, J.Electroanal.Chem.Interfacial
	Electrochem. 130 (1981) 367
271	F.Fournier, J.Berthelot and P.L.Pascal, Seances Acad.Sci.
	Ser 2, 294 (1982) 849; CA 97 (1982) 100495
272	M.Hronec and J.Ilavsky, J.Catal. 78 (1982) 465
273	V.V.Antonova, A.M.Bespalova and B.F.Ustavshchikov, Zh.Org.
	Khim. 18 (1982) 1313
274	V.A.Kudryashov, M.N.Manakov and Yu.N.Bogoslovskii,
	Neftekhimija 21 (1981) 705
275	S.V.Krylova, L.I.Shcherbak and N.I.Mitskievich, Vestsi
	Akad.Navuk BSSR,Ser.Khim.Navuk (1982) 21; CA 97 (1982)
	126986
276	S.P.Prokopchuk, S.S.Abadzhev and R.S.Yakhnitskii, Visn.
	L'viv Politekh.Inst. 163 (1982) 39; CA 97 (1982) 126992
277	M.N.Fedorishcheva, T.G.Kosmacheva, I.I.Korsak, V.E.Agabekov
	and N.I.Mitskevich, Vestsi Akad. Navuk BSSR, Ser.Khim.
	Navuk (1981) 27; CA 96 (1982) 19621
278	M.I.Dayan, I.D.Kushina, Yu.A.Pazdersi, V.A.Bryukhovetskii
	and S.S.Levus, Promst, Arm. (1981) N ^O 10, 32; CA 96
	(1982) 122163
279	R.A.Galimov, I.M.Kuznetsova and N.M.Lebedeva, Azerb.Khim.Zh.
	(1981) N ^O 4, 41; CA 96 (1982) 199038
280	M.U.Fedurtsa and S.S.Abadzhev, Ukr.Khim.Zh. (Russ.Ed.) 48
	(1982) 266; CA 97 (1982) 5747
281	M.Gebler, J.Inorg.Nucl.Chem. 43 (1981) 2759
282	T.Miura, K.Shibata, T.Sawaya and M.Kimura, Chem.Pharm.Bull.
	30 (1982) 67
283	X.Wang, M.Zhang, H.Hong, L.Guo, Q.Lu, T.Xtong, G.Zha and
	G.Li, Cuihua Xuebao 2 (1981) 323; CA 96 (1982) 84888
284	X.Wang, M.Zhang, H.Hong, G.Zha and G.Li, Fundam.Res.Organo-
	met.Chem.,Proc.China-Jpn-U.S.Trilateral Semin.Organomet.
	Chem., 1st. (1980) 723; CA 97 (1982) 71765

- 285 B.Ya.Ladygin and N.N.Fedyaeva, Neftekhimiya 22 (1982) 237
- 286 B.G.Freidin and A.L.Perkel, Zh.Priklad.Khim. (Leningrad) 54 (1981) 2733
- 287 R.Wang, M.Xie and R.Wang, Huagong Xuebao (1982) 50; CA 97 (1982) 55071
- 288 E.L.Gershanova, M.M.Mogilevich, M.F.Sorokin, G.V.Klimov and V.D.Sukhov, Deposited Doc. (1981) VINITI 2801; CA 97 (1982) 126975
- 289 L.V.Shibaeva, N.G.Ariko, Yu.I.Gudimenko and N.I.Mitskevich Vestsi Akad.Navuk BSSR, Ser.Khim.Navuk (1982) 40; CA 97 (1982) 215602
- 290 E.A.Efanova, K.E.Kharlampidi and N.M.Lebedeva, Neftekhimiya 22 (1982) 242
- 291 A.Zombeck, D.E.Hamilton and R.S.Drago, J.Am.Chem.Soc. 104 (1982) 6782
- 292 M.T.Atlay, M.Preece, G.Strukul and B.R.James, J.C.S.Chem. Commun., (1982) 406
- 293 M.Cihova, J.Vojtko, M.Hrusovsky and P.Marek, Petrochemia 21 (1981) 72; CA 96 (1982) 103574
- 294 J.Tsuji, H.Nagashima and K.Hori, Tetrahedron Lett. 23 (1982) 2679
- 295 H.Nagashima, K.Sakai and J.Tsuji, Chem.Lett. (1982) 859
- 296 W.K.Wan, K.Zaw and P.M.Henry, J.Mol.Catal. 16 (1982) 81
- 297 A.V.Devekki, D.V.Mushenko and V.S.Fedorov, Zh.Org.Khim. 17 (1981) 2519
- 298 S.M.Brailovski, L.Elfterin. O.N.Chernysheva and A.P.Belov Kinet,Katal. 23 (1982) 54
- 299 J.Muzart, P.Pale and J.P.Pete, Tetrahedron Lett. 23 (1982) 3577
- 300 I.A.Krylov, I.Yu.Litvintsev, V.N.Sapunov and N.N.Lebedev Kinet.Katal. 23 (1982) 853
- 301 I.A.Krylov, M.Yu.Baevskii, I.Yu.Litvintsev, V.N.Sapunov and N.N.Lebedev, Kinet.Katal. 23 (1982) 858
- 302 S.Ito, K.Inoue and M.Matsumoto, J.Am.Chem.Soc. 104 (1982) 6450
- 302a S.Futamura, H.Ohta and Y.Kamiya, Chem.Lett. (1982) 381
- 303 A.Heuman, F.Chauvet and B.Waegell, Tetrahedron Lett. 23 (1982) 2767
- 304 M.A.Andrews and C.W.F.Cheng, J.Am.Chem.Soc. 104 (1982) 4268

305	D.G.Batyr, I.M.Reibel and A.F.Sandu, Azerb.Khim.Zh. (1981) N ^O 4, 69 ; CA 96 (1982) 180494
306	W.Sawodny, R.Grünes and H.Reitzle, Angew.Chem. 94 (1982) 803
307	JM.Maissant, C.Bouchoule and M.Blanchard, J.Mol.Catal. 14 (1982) 333
308	A.Ya.Yuffa, U.V.Berentsveig, A.V.Kudryavtsev and G.V.Lisich-
	kin, Kinet.Katal. 22 (1981) 1469
309	V.F.Nazimok, V.N.Kulakov and T.A.Simonova, Azerb.Khim.Zh (1981) N ^O 4, 101: CA 96 (1982) 180498
210	M Unered and I Lieuwhy. Ind Eng Okan Duck Day Di
310	(1982) 455
311	K.Shimizu, K.Kizawa, T.Yoshimoto and J.Imamura, Sekiyu Gakkaishi 25 (1982) 7. CA 96 (1982) 122333
21.2	
312	J.Koshitani, T.Kado, Y.Ueno and T.Yoshida, Bull.Chem.Soc. Jpn. 55 (1982) 1931
313	J.Koshitani, T.Kado, Y.Ueno and T.Yoshida, J.Org.Chem. 47
	(1982) 2879
314	V.V.Berentsveig, O.E. Dotsenko, A.T.Kokorin, V.D.Konvlova
	and E.L.Frumkina Izv.Akad.Nauk SSSR, Ser.Khim. (1982) 2211
315	M.V.Nesterov, V.A.Ivanov, V.M.Potekhin and A.U.Kazannikova
	Azerb.Khim.Zh. (1981) N ^O 4, 48-50; CA 96 (1982) 180492
316	S.Shinkai, Y.Ishikawa and O.Manabe, Chem.Lett. (1982) 809
317	E.Papaconstantinou, J.C.S.Chem.Commun. (1982) 12
318	V.P.Tret'yakov, G.P.Zimtseva, E.S.Rudakov and A.V.Bogdanov
	Kinet.Katal. 23 (1982) 247
319	V.P.Tretyakov, G.P.Zimtseva, E.S.Rudakov and A.U.Bogdanov
	Kinet.Catal.Lett. 19 (1982) 263
320	N.I.Jonescu and D.Popescu, Rev.Roum.Chim. 27 (1982) 481;
	CA 97 (1982) 23092
321	Y.Tatsuno, M.Tatsuda and S.Otsuka, J.C.S.Chem.Commun. (1982)
	1100
322	M.Matsumoto and K.Kuroda, J.Am.Chem.Soc. 104 (1982) 1433
323	C.Bied-Charreton, M.Frostin-Rio, D.Puyol, A.Gaudemer,
	R.Audebert and J.P.Idoux, J.Mol.Catal. <u>16</u> (1982) 335
324	A.N.Astanina, A.F.Gamidov, A.P.Rudenko and G.L.Smirnova
	Azerb. Khim. Zh. (1981) 20; CA 96 (1982) 92398
325	K.Ohkubo, K.Miyata and S.Sakaki, J.Mol.Catal. 17 (1982) 85
326	T.Funabiki, T.Sugimoto, S.Yoshida, Chem.Lett. (1982) 1097
327	K.Seguchi and S.Hirota, Chem.Lett. (1982) 385

- 328 Yu.I.Pyatnitskii, V.M.Vorotyntsev, O.Biryukovich and E.P. Kuznetsova, Kinet.Katal. 23 (1982) 608
- 329 D.G.Brown and W.J.Hughes, Z.Naturforsch 36B (1981) 1324
- 330 H.Nishide, T.Minakata and E.Tsuchida, J.Mol.Catal. 15 (1982) 327
- 331 R.J.Radel, J.M.Sullivan and J.D.Hatfield, Ind.Eng.Chem.Prod. Res.Dev. 21 (1982) 566
- 332 H.Egawa, T.Nonaka and N.Kozakura, Bull.Chem.Soc.Jpn. 55 (1982) 3536
- 333 P.Capdevielle and M.Maumy, Tetrahedron Lett. 23 (1982) 1573
- 334 P.Capdeville and M.Maumy, Tetrahedron Lett. 23 (1982) 1577
- 335 G.J.Lambert, R.P.Duffley, H.C.Dalzell and R.K.Razdan , J.Org.Chem. 47 (1982) 3350
- 336 I.Apostol, J.Haber, T.Mlodnicka and J.Poltowicz, J.Mol.Catal. 14 (1982) 197
- 337 C.Jallabert, C.Lapinte and H.Riviere, J.Mol.Catal. 14 (1982) 75
- 338 P.Lederer, S.Lunak, E.Macova and J.Veprek-Siska, Collect. Czech.Chem.Commun. 47 (1982) 392
- 339 N.M.Lebedeva, L.D.Marus and L.I.Kornilova, Khim.Tekhnol. Pererab.Nefti Gaza (1981) 8; CA 97 (1982) 181522
- 340 O.P.Dmitrieva, G.N.Supichenko, V.E.Agabekov, I.I.Korsak and N.I.Mitskevich, Vestsi Akad.Navuk BSSR, Ser.Khim.Navuk (1982) N^O1, 22; CA 96 (1982) 180464
- 341 J.Muzart and J.P.Pete, J.Mol.Catal. 15 (1982) 373
- 342 T.Nakayama, E.Nakamura and K.Koguchi, Nippon Kagaku Kaishi (1982) 472; CA 96 (1982) 217010
- 343 N.E.Davidenko, S.A.Borisenkova and A.P.Rudenko, Vestn.Mosk. Univ.Ser.2:Khim. 23 (1982) 269; CA 97 (1982) 55096
- 344 D.M.Wagnerova, J.Blanck and J.Veprek-Siska, Collect.Czech. Chem.Commun. 47 (1982) 755
- 345 K.Mikova, V.Kyzlink and A.Heinzova, Sb.Vys.Sk.Chem.-Technol. Praze, Potraviny E52 (1981) 15; CA 97 (1982) 90541
- 346 Yu.P.Zhukov, R.B.Suitych, N.N.Rzhevskaja, O.P.Jablonski and A.V.Bondarenko, Zh.Org.Khim. 18 (1982) 78
- 347 I.M.Krip and A.I.Klyuchkivskii, Visn.L'viv.Politekh.Inst. 163 (1982) 22; CA 97 (1982) 126774
- 348 S.Sano and Y.Sugiura, J.C.S.Chem.Commun. (1982) 750

584	
349	D.Mansuy, P.Battioni and J.P.Mahy, J.Am.Chem.Soc. 104 (1982) 4487
350	S.Cenini, F.Porta and M.Pizzotti, J.Mol.Catal. 15 (1982) 297
351	A.M.Bespalova, V.V.Antonova, I.A.Ershova and
	B.F.Ustavshchikov, Osnovn.Org.Sint.Neftekhim. 13 (1980) 61; CA 97 (1982) 162104
352	S.Németh and L.Simándi, J.Mol.Catal. 14 (1982) 87
353	S.Németh and L.Simándi, J.Mol.Catal. 14 (1982) 241
354	K.A.Askarov, E.V.Bystritskaya, R.V.Tashmatova, V.Onish- chenko, B.R.Smirnov, G.G.Tsoi and N.S.Enykolopyan Dokl.Akad.Nauk, SSSR 262 (1982) 635
355	A.Inada, Y.Nakamura and Y.Morita, Chem.Pharm.Bull. 30 (1982) 1041; CA 97 (1982) 109612
356	A.Nishinaga, H.Tomita, M.Oda and T.Matsuura, Tetrahedron Lett. 23 (1982) 339
357	A.Nishinaga, T.Shimizu, Y.Toyoda, T.Matsuura and
	K.Hirotsu, J.Org.Chem. 47 (1982) 2278
358	S.Németh and L.I.Simándi, Inorg.Chim.Acta 64 (1982) L21
359	K.Kaneda, T.Itoh, N.Kii, K.Jutsukawa and S.Teranishi J.Mol.Catal. 15 (1982) 349
360	T.Kajimoto, H.Takahashi and H.Tsuji, Bull.Chem.Soc.Jpn. 55 (1982) 3673
361	É.Balogh-Hergovich, G.Bodnár and G.Speier, Acta Chim.Acad. Sci.Hung. 108 (1981) 37
362	É.Balogh-Hergovich, G.Speier and Z.Tyeklár, Synthesis (1982) 731
363	J.O.Cabral, M.F.Cabral, M.G.B.Drew, F.S.Esho and S.M. Nelson, J.C.S.Chem.Commun. (1982) 1068
364	N.Ueyama, E.Kamada and A.Nakamura, Chem.Lett. (1982) 947
365	D.M.Roundhill, M.K.Dickson, N.S.Dixit and B.P.Sudha-Dixit
	Adv.Chem.Ser. 196 (1982) 291
366	A.Skorobogaty and T.D.Smith, J.Mol.Catal. 16 (1982) 131
367	T.A.Anan'eva, G.F.Titova and V.F.Borodkin, Izv.Vyssh.
	Uchebn.Zaved.,Khim.Khim.Tekhnol 25 (1982) 706; CA 97
	(1982) 144092
368	O.Yamauchi and H.Seki, Chem.Lett. (1982) 1241
369	T.U.Shchedrinskaya, A.A.Leichenko and M.N.Volkov, Zh.Org.
	Khim. 17 (1981) 2177
370	N.P.Belous, F.F.Shcherbina and D.N.Tmenov, Ukr.Khim.Zh. (Russ.Ed.) 47 (1981) 1252; CA 96 (1982) 84876

371 I.V.Spirina, V.N.Alyasov, V.N.Glushakova, N.A.Skorodumova, V.P.Sergeeva, N.V.Balakshina, V.P.Maslennikov, Y.A. Aleksandrov and G.A.Razuvaev, Zb.Org.Khim. 18 (1982) 1796 372 L.N. Arzamaskova, A.V. Romanenko and Yu.I.Ermakov, Kinet. Katal. 22 (1981) 1438 373 L.N.Arzamaskova, A.V.Romanenko and Yu.I.Ermakov, Kinet. Katal. 22 (1981) 1186 374 B.C.Schardt, F.J.Hollander and C.L.Hill, J.Am.Chem.Soc. 104 (1982) 3964 375 E.S.Rudakov, L.K.Vol'kova, V.P.Tret'yakov and V.V. Zamashchikov, Kinet.Katal, 23 (1982) 26 376 S.Tamagaki, K.Hotta and W.Tagaki, Chem.Lett. (1982) 651 377 M.A.Brook, L.Castle, J.R.L.Smith, R.Higgins and K.P.Morris J.C.S.Perkin Trans.II (1982) 687 378 A.M.Khenin and A.A.Steinman, Kinet.Katal, 23 (1982) 219 D.Mansuy, J.-F.Bartoli and M.Momenteau, Tetrahedron Lett. 379 23 (1982) 2781 380 P.Müller and J.Godoy, Helv.Chim.Acta 64 (1981) 2531 381 P.Müller and J.Godoy, Tetrahedron Lett. 23 (1982) 3661 382 S.Uemura and S.RPatil, Tetrahedron Lett. 23 (1982) 4353 S.Uemura and S.R.Patil, Chem.Lett (1982) 1743 382a 383 S.Uemura, S.Fukuzawa, A.Toshimitsu and M.Okano, Tetrahedron Lett. 23 (1982) 87 384 E.S.Rudakov and L.K.Volkova, Dokl.Akad.Nauk SSSR, 263 (1982) 647 Ya.A.Dorfman, Zh.Fiz.Khim. 55 (1981) 2793 385 F.Di Furia, H.Modena, R.Curci, S.J.Bachofer, J.O.Edwards 386 and M.Pomerantz, J.Mol.Catal, 14 (1982) 219 A.S.Narula, Tetrahedron Lett. 23 (1982) 5579 387 388 D.V.Banthorpe and S.E.Barrow, Chem.Ind. (London), (1981) 502 389 C.E.Chapin, E.F.Twohig, L.D.Keys and K.M.Gorski, J.Appl. Polym,Sci. 27 (1982) 811 390 M.Isobe, M.Kitamura, S.Mio and T.Goto, Tetrahedron Lett. 23 (1982) 221 L.A.Reed, Y.Ito, S.Masamune and K.B.Sharpless, J.Am.Chem. 391 Soc. 104 (1982) 6468 K.C.Nicolaou and J.Uenishi, J.C.S.Chem.Commun. (1982) 1292 392 393 W.H.Rastetter, J.Adams, J.Bordner, Tetrahedron Lett. 23 (1982) 1319

394	R.D.Wood and B.Ganem, Tetrahedron Lett, 23 (1982) 707
395	L.I.Simándi, É.Záhonyi-Budó and J.Bodnár, Inorg.Chim.
	Acta 65 (1982) L181
396	A.P.Filippov, G.A.Konishevskava and V.M.Beousov, Kinet.
	Katal. 23 (1982) 346
397	Sh.Liu and B.Yu. Cuihua Xuebao 2 (1981) 229: CA 96 (1982)
	209724
398	U.M.Dzhemilev, R.N.Fakhretdinov, A.G.Telin, G.A.Tolstikov,
	D.V.Amirkhanov and V.P.Krivonogov, Khim.Prir.Soedin. (1981)
	650; CA 96 (1982) 85346
399	S.B.Grinenko, V.M.Belousov, L.A.Oshin, G.A.Shakhovtseva,
	N.I.Kovtyukhova, A.P.Filippov and K.B.Yatsimirskii, Dokl.
	Akad.Nauk SSSR, 263 (1982) 1395
400	V.D.Vardanyan, I.Yu.Litvintsev, U.N.Sapunov, A.G.Komarov
	and T.T.Avakyan, Arm.Khim.Zh. 35 (1982) 141; CA 97 (1982)
	38295
401	A.O.Kolmakov, V.M.Fomin, T.N.Aizenshtadt and Yu.A.
	Aleksandrov, Zh.Obshch.Khim. 51 (1981) 2805
402	Ch.Ch.Su, Ch.H.Ueng, W.H.Lin, M.J.Gi and K.H.Lii, Proc.
	Natl.Sci.Counc.Rep.China, Part B. 6 (1982) 45; CA 96
	(1982) 180230
403	M.B.Groen and F.J.Zeelen, Tetrahedron Lett. 23 (1982) 3611
404	M.Inoue, Y.Itoi, S.Enomoto and Y.Watanabe, Chem Lett.
	(1982) 1375
405	E.Guilmet and B.Meunier, Tetrahedron Lett. 23 (1982) 2449
406	S.E.Diamond, F.Mares, A.Szalkiewicz, D.A.Muccigrosso and
	J.P.Solar, J.Am.Chem.Soc. 104 (1982) 4266
407	J.R.L.Smith and P.R.Sleath, J.C.S.Perkin Trans.II (1982)
	1009
408	M.W.Nee and T.C.Bruice, J.Am.Chem.Soc. 104 (1982) 6123
409	Y.Masuyama, M.Usukura and Y.Kurusu, Chem.Lett. (1982)
410	M.Barteri and B.Pispisa, Biopolymers 21 (1982) 1093
411	M.Barteri and B.Pispisa, J.C.S.Faraday Trans. I, 78
41.0	(1982) 2085 C. Chinada N. Tarwa K. Walita and N. Caita Trang Chim
412	S.Shihoda, N.Inove, K.Takita and Y.Saito, Inorg.chim.
413	Acta 03 (1902) L21 S C Pati and B R Dev. Rev Roum Chim $27 (1982) 523$.
713	(2 97 (1982) 23093
414	S.C.Pati and M.Panda, Bull.Soc.Chim.Belg. 91 (1982) 271
	store and instantial bullious on an aborge of (1902) 2/1

- 415 R.Singh and S.M.Singh, Ann.Soc.Sci.Bruxelles, Ser.1, 95 (1981) 251; CA 97 (1982) 23094
- 416 K.Behari, R.S.Shukla, R.K.Dwivedi, N.N.Pandey, Oxid. Commun 2 (1981) 63; CA 97 (1982) 215270
- 417 H.S.Singh, K.C.Tiwari and S.M.Singh, Indian J.Chem, Sect A 21A (1982) 520; CA (1982) 181505
- 418 R.K.Dwivedi, H.Narayan and K.Behari, J.Inorg.Nucl.Chem. 43 (1981) 2893
- 419 N.Nath, L.P.Singh and R.P.Singh, J.Indian Chem.Soc. 58 (1981) 1204
- 420 M.Kimura, A.Kobayashi and K.Boku, Bull.Chem.Soc.Jpn. 55 (1982) 2068
- 421 A.Z.Muradov and A.A.Yasnikov, Dopov.Akad.Nauk Ukr. RSR, Ser.B: Geol.Khim.Biol.Nauki (1982) 3, 39; CA 97 (1982) 12482
- 422 S.P.Srivastava, A.Kumar and V.K.Gupta, Rev.Roum.Chim. 26 (1981) 939
- 423 J.A.Litwin, Acta Histochem. 71 (1982) 111; CA 97 (1982) 106400
- 424 R.C.Acharya, N.K.Saran, S.R.Rao and M.N.Das, Int.J.Chem. Kinet. 14 (1982) 143
- 425 Y.Nakayama, Y.Sanemitsu and H.Yoshioka, Tetrahedron Lett. 24 (1982) 2499
- 426 O.S.Fedorova, S.E.Olkin and V.M.Berdnikov, Z.Phys.Chem. (Leipzig) 263 (1982) 529
- 427 Y.Ogata and K.Tanaka, Can.J.Chem. 60 (1982) 848
- 428 O.Bortolini, F.Di Furia and G.Modena, J.Mol.Catal. 16 (1982) 61
- 429 O.Bortolini, F.Di Furia and G.Modena, J.Mol.Catal. 16 (1982) 69
- 430 O.Bortolini, C.Campello, F.Di Furia and G.Modena, J.Mol. Catal. 14 (1982) 63
- 431 O.Bortolini, F.Di Furia and G.Modena, J.Mol.Catal. 14 (1982) 53
- 432 W.Ando, R.Tajima and T.Takata, Tetrahedron Lett. 23 (1982) 1685
- 433 S.Oae, Y.Watanabe and K.Fujimori, Tetrahedron Lett. 23 (1982) 1184
- 434 E.S.Rudakov, N.A.Tishchenko, V.P.Kukhar and U.F.Baklan, Dopov.Akad.Nauk.Ukr.RSR.Ser.B: Geol.Khim.Biol.Nauki (1982) 54; CA 97 (1982) 126755

435	T.K.Chakraborty and S.Chandrasekaran, Org.Prep.Proced.
	Int. 14 (1982) 362; CA 97 (1982) 215073
436	M.V.De Martinez, F.G.De Vendetti, I.J.S.De Fenik and C.A.
	N.Catalan, An.Assoc.Quim. Argent. 70 (1982) 137; CA 96
	(1982) 218042
437	D.M.Walba and G.S.Stoudt, Tetrahedron Lett. 23 (1982)
	727
438	L.K.Volkova, Yu.V.Goletii, G.V.Lyubimova, E.S.Rudakov,
	V.P.Tretyakov and A.E.Shilov, Izv.Akad.Nauk SSSR,Ser.
	Khim. (1982) 1654
439	J.Burkhard, P.Jakoubek and L.Vodicka, Sb.Vys.Sk.Chem
	Technol.Praze, Technol.Paliv, D44 (1981) 157; CA 97 (1982)
	181811
440	Z.S.Makarova and I.B.Repinskaya, Zh.Org.Khim. 18 (1982)
	1022
441	D.G.Lee, S.E.Lamb and V.S.Chang, Org.Synth. 60 (1981) 11
442	N.Garti and E.Auni, Colloids Surf. 4 (1982) 33
443	D.G.Lee and K.C.Brown, J.Am.Chem.Soc. 104 (1982) 5076
444	A.Z.Kreindlin and M.I.Rybinskaya, Izv.Akad.Nauk SSSR,
	Ser.Khim. (1982) 174
445	S.Kumar and P.C.Mathur, Chem.Prum. 31 (1981) 359; CA 96
	(1982) 51595
446	M.S.Thompson and T.J.Meyer, J.Am.Chem.Soc. 104 (1982)
	5070
447	M.Schröder and E.C.Constable, J.C.S.Chem.Commun. (1982)
	734
448	L.Joensson, Acta Chem.Scand., B 35 (1981) 683
449	M.Puutio and P.O.I.Virtanen, Finn.Chem.Lett. (1981) N ^O 7-8,
	87; CA 96 (1982) 122022
450	J.E.Hila, M.Tsini-Tsamis, M.Hamon and J.P.Delacroix
	Analusis 10 (1982) 220; CA 97 (1982) 78767
451	J.Herscovici, MJ.Ergon and K.Antonakis, J.C.S.Perkin
	Trans.I (1982) 1967
452	T.T.Minasyan, F.S.Kinoyan and Sh.O.Badanyan, Arm.Khim.Zh.
	35 (1982) 579; CA 97 (1982) 215481
453	S.U.Kulkarni, C.G.Rao, V.D.Patil, Heterocycles 18 (1982)
	321
454	Y.Ishikawa, M.Yoshida and T.Ando, Osaka Kogyo Gijutsu
	Shikensho Kiho 33 (1982) 1; CA 97 (1982) 38533
455	F.S.Guziec and F.A.Luzzio, J.Org.Chem. 47 (1982) 1787

- 456 P.C.Samal, S.Ch.D.Rao and S.N.Mahapatro, Curr.Sci. 51 (1982) 41; CA 97 (1982) 197666
- 457 M.Matsuda, N.Yasuda and W.Yano, Kiyo-Suzuka Kogyo Koto Senmon Gakko 15 (1982) 217; CA 97 (1982) 71903
- 458 J.M.J.Frechet, P.Darling and M.J.Farall, Polym.Prepr.Am. Chem.Soc.Div.Polym.Chem. 21 (1980) 272
- 459 J.Holecek, K.Handlir and M.Nadvornik, Collect.Czech.Chem. Commun. 47 (1982) 562
- 460 I.N.Pinchuk, V.F.Chuvaev, N.S.Ovchinnikova, L.T.Zhuravlev and V.I.Spitsyn, Izv.Akad.Nauk SSSR, Ser.Khim. (1982) 798
- 461 J.R.Darwent, J.C.S.Chem.Commun. (1982) 798
- 462 P.N.Pande, H.L.Gupta, S.C.Ameta and T.C.Sharma, Acta Phys. Chem. 27 (1981) 125; CA 96 (1982) 163062
- 463 G.V.Rao, K.Ch.Rajanna and P.K.Saiprakash, Z.Phys.Chem. (Leipzig) 263 (1982) 622
- 464 F.Freeman, D.K.Lin and G.R.Moore, J.Org.Chem. 47 (1982) 56
- 465 N.A.Noureldin and D.G.Lee, J.Org.Chem. 47 (1982) 2790
- 466 B.L.Seong and M.H.Han, Chem.Lett. (1982) 627
- 467 A.Cornelis, P.Y.Herzé and P.Laszlo, Tetrahedron Lett. 23 (1982) 5035
- 468 A.G.Milaev, V.B.Panov and O.Yu.Okhlobystin, Zh.Obshch. Khim. 51 (1981) 2715
- 469 M.S.Thompson and T.J.Meyer, J.Am.Chem.Soc. 104 (1982) 4106
- 470 T.Morimoto and M.Hirano, J.C.S.Perkin Trans.II (1982) 1087
- 471 M.Kimura, M.Yamamoto-Tsuruta and S.Yamabe, J.C.S. Dalton Trans. (1982) 423
- 472 D.Fox and C.F.Wells, J.C.S.Faraday Trans.I, 78 (1982) 1525
- 473 D.Fox and C.F.Wells, J.C.S.Faraday Trans.I, 78 (1982) 2929
- 474 J.C.Brodovitch, A.McAuley and T.Oswald, Inorg.Chem. 21 (1982) 3442
- 475 H.Yamamoto and T.Hayakawa, Int.J.Biol.Macromol. 4 (1982) 116
- 476 A.Kumar, J.Phys.Chem. 86 (1982) 1674
- 477 R.S.Macomber, J.Org.Chem. 47 (1982) 2481

478	T.R.Prasad, B.S.Ram and T.N.Rao, Curr.Sci. 51 (1982) 749;
	CA 97 (1982) 162115
479	K.E.Rittle, C.F.Homnick, G.S.Ponticello and B.E.Evans,
	J.Org.Chem. 47 (1982) 3016
480	A.V.Stachulski, Tetrahedron Lett. 23 (1982) 3789
481	N.Kornblum, A.S.Erickson, W.J.Kelly and B.Henggeler, J.
	Org.Chem. 47 (1982) 4534
482	J.H.Clark and D.G.Cork, J.C.S.Chem.Commun. (1982) 635
483	R.Nesi, S.Chimichi, F.De Sio, R.Pepino and P.Tedeschi,
	Tetrahedron Lett 23 (1982) 4397
484	H.Firouzabadi, B.Vessal and M.Naderi, Tetrahedron Lett.
	23 (1982) 1847
485	S.W.Pelletier, J.A.Glinski and N.V.Mody, J.Am.Chem.Soc.
	104 (1982) 4676
486	T.S.Boiko, O.M.Grishin and A.A.Yasnikov, Ukr.Khim.Zh.
	(Russ.Ed.) 48 (1982) 390; CA 97 (1982) 5596
487	N.Tsubokawa, N.Takeda and Y.Sone, Bull.Chem.Soc.Jpn. 55
	(1982) 3541
488	T.Fujii, T.Hiraga and M.Ohba, Chem.Pharm. Bull. 29 (1981)
	2503
489	T.Itahara, H.Ouya and K.Kozono, Bull.Chem.Soc.Jpn. 55
	(1982) 3861
490	R.Sugimoto, H.Suzuki, Y.Moro-Oka and T.Ikawa, Chem.Lett.
	(1982) 1863
491	E.F.de A.Neves, W.Polito, W.L.Moraes and D.W.Franco,
	Talanta 28 (1981) 867
492	D.G.Lee and C.F.Sebastian, Can.J.Chem. 59 (1981) 2776,
	2780
493	A.K.Bhattacharjee and M.K.Mahanti, Int.J.Chem.Kinet. 14
	(1982) 1113
494	T.V.Lee and J.Toczek, Tetrahedron Lett. 23 (1982) 2917